Mister Exam

Other calculators


1/((x+1)^(1/3)+1)

Integral of 1/((x+1)^(1/3)+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0                   
  /                   
 |                    
 |          1         
 |  1*------------- dx
 |    3 _______       
 |    \/ x + 1  + 1   
 |                    
/                     
-1                    
$$\int\limits_{-1}^{0} 1 \cdot \frac{1}{\sqrt[3]{x + 1} + 1}\, dx$$
Integral(1/((x + 1)^(1/3) + 1), (x, -1, 0))
The answer (Indefinite) [src]
  /                                                                          
 |                                                                        2/3
 |         1                  3 _______        /    3 _______\   3*(1 + x)   
 | 1*------------- dx = C - 3*\/ 1 + x  + 3*log\1 + \/ 1 + x / + ------------
 |   3 _______                                                        2      
 |   \/ x + 1  + 1                                                           
 |                                                                           
/                                                                            
$$3\,\left(\log \left(\left(x+1\right)^{{{1}\over{3}}}+1\right)+{{ \left(x+1\right)^{{{2}\over{3}}}-2\,\left(x+1\right)^{{{1}\over{3}}} }\over{2}}\right)$$
The graph
The answer [src]
-3/2 + 3*log(2)
$$3\,\log 2-{{3}\over{2}}$$
=
=
-3/2 + 3*log(2)
$$- \frac{3}{2} + 3 \log{\left(2 \right)}$$
Numerical answer [src]
0.579441541679836
0.579441541679836
The graph
Integral of 1/((x+1)^(1/3)+1) dx

    Use the examples entering the upper and lower limits of integration.