1 / | | x + 1 | ------ dx | 2 | x + 4 | / 0
Integral((x + 1)/(x^2 + 4), (x, 0, 1))
/ | | x + 1 | ------ dx | 2 | x + 4 | /
/ 2*x \
|------------|
| 2 |
x + 1 \x + 0*x + 4/ 1
------ = -------------- + --------------
2 2 / 2 \
x + 4 |/-x \ |
4*||---| + 1|
\\ 2 / // | | x + 1 | ------ dx | 2 = | x + 4 | /
/
|
/ | 1
| | ---------- dx
| 2*x | 2
| ------------ dx | /-x \
| 2 | |---| + 1
| x + 0*x + 4 | \ 2 /
| |
/ /
------------------ + ----------------
2 4 /
|
| 2*x
| ------------ dx
| 2
| x + 0*x + 4
|
/
------------------
2 2 u = x
/
|
| 1
| ----- du
| 4 + u
|
/ log(4 + u)
----------- = ----------
2 2 /
|
| 2*x
| ------------ dx
| 2
| x + 0*x + 4
| / 2\
/ log\4 + x /
------------------ = -----------
2 2 /
|
| 1
| ---------- dx
| 2
| /-x \
| |---| + 1
| \ 2 /
|
/
----------------
4 -x
v = ---
2 /
|
| 1
| ------ dv
| 2
| 1 + v
|
/ atan(v)
------------ = -------
4 4 /
|
| 1
| ---------- dx
| 2
| /-x \
| |---| + 1
| \ 2 / /x\
| atan|-|
/ \2/
---------------- = -------
4 2 /x\
atan|-| / 2\
\2/ log\4 + x /
C + ------- + -----------
2 2 / /x\ | atan|-| / 2\ | x + 1 \2/ log\4 + x / | ------ dx = C + ------- + ----------- | 2 2 2 | x + 4 | /
atan(1/2) log(5) log(4)
--------- + ------ - ------
2 2 2
=
atan(1/2) log(5) log(4)
--------- + ------ - ------
2 2 2
atan(1/2)/2 + log(5)/2 - log(4)/2
Use the examples entering the upper and lower limits of integration.