Mister Exam

Other calculators


(x+1)/(x^2+4)

Integral of (x+1)/(x^2+4) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |  x + 1    
 |  ------ dx
 |   2       
 |  x  + 4   
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{x + 1}{x^{2} + 4}\, dx$$
Integral((x + 1)/(x^2 + 4), (x, 0, 1))
Detail solution
We have the integral:
  /         
 |          
 | x + 1    
 | ------ dx
 |  2       
 | x  + 4   
 |          
/           
Rewrite the integrand
         /    2*x     \                 
         |------------|                 
         | 2          |                 
x + 1    \x  + 0*x + 4/         1       
------ = -------------- + --------------
 2             2            /     2    \
x  + 4                      |/-x \     |
                          4*||---|  + 1|
                            \\ 2 /     /
or
  /           
 |            
 | x + 1      
 | ------ dx  
 |  2        =
 | x  + 4     
 |            
/             
  
                       /             
                      |              
  /                   |     1        
 |                    | ---------- dx
 |     2*x            |      2       
 | ------------ dx    | /-x \        
 |  2                 | |---|  + 1   
 | x  + 0*x + 4       | \ 2 /        
 |                    |              
/                    /               
------------------ + ----------------
        2                   4        
In the integral
  /               
 |                
 |     2*x        
 | ------------ dx
 |  2             
 | x  + 0*x + 4   
 |                
/                 
------------------
        2         
do replacement
     2
u = x 
then
the integral =
  /                     
 |                      
 |   1                  
 | ----- du             
 | 4 + u                
 |                      
/             log(4 + u)
----------- = ----------
     2            2     
do backward replacement
  /                             
 |                              
 |     2*x                      
 | ------------ dx              
 |  2                           
 | x  + 0*x + 4                 
 |                      /     2\
/                    log\4 + x /
------------------ = -----------
        2                 2     
In the integral
  /             
 |              
 |     1        
 | ---------- dx
 |      2       
 | /-x \        
 | |---|  + 1   
 | \ 2 /        
 |              
/               
----------------
       4        
do replacement
    -x 
v = ---
     2 
then
the integral =
  /                   
 |                    
 |   1                
 | ------ dv          
 |      2             
 | 1 + v              
 |                    
/              atan(v)
------------ = -------
     4            4   
do backward replacement
  /                       
 |                        
 |     1                  
 | ---------- dx          
 |      2                 
 | /-x \                  
 | |---|  + 1             
 | \ 2 /               /x\
 |                 atan|-|
/                      \2/
---------------- = -------
       4              2   
Solution is:
        /x\              
    atan|-|      /     2\
        \2/   log\4 + x /
C + ------- + -----------
       2           2     
The answer (Indefinite) [src]
  /                    /x\              
 |                 atan|-|      /     2\
 | x + 1               \2/   log\4 + x /
 | ------ dx = C + ------- + -----------
 |  2                 2           2     
 | x  + 4                               
 |                                      
/                                       
$$\int \frac{x + 1}{x^{2} + 4}\, dx = C + \frac{\log{\left(x^{2} + 4 \right)}}{2} + \frac{\operatorname{atan}{\left(\frac{x}{2} \right)}}{2}$$
The graph
The answer [src]
atan(1/2)   log(5)   log(4)
--------- + ------ - ------
    2         2        2   
$$- \frac{\log{\left(4 \right)}}{2} + \frac{\operatorname{atan}{\left(\frac{1}{2} \right)}}{2} + \frac{\log{\left(5 \right)}}{2}$$
=
=
atan(1/2)   log(5)   log(4)
--------- + ------ - ------
    2         2        2   
$$- \frac{\log{\left(4 \right)}}{2} + \frac{\operatorname{atan}{\left(\frac{1}{2} \right)}}{2} + \frac{\log{\left(5 \right)}}{2}$$
atan(1/2)/2 + log(5)/2 - log(4)/2
Numerical answer [src]
0.343395580157508
0.343395580157508
The graph
Integral of (x+1)/(x^2+4) dx

    Use the examples entering the upper and lower limits of integration.