1 / | | x + 1 | ------ dx | 2 | x + 4 | / 0
Integral((x + 1)/(x^2 + 4), (x, 0, 1))
/ | | x + 1 | ------ dx | 2 | x + 4 | /
/ 2*x \ |------------| | 2 | x + 1 \x + 0*x + 4/ 1 ------ = -------------- + -------------- 2 2 / 2 \ x + 4 |/-x \ | 4*||---| + 1| \\ 2 / /
/ | | x + 1 | ------ dx | 2 = | x + 4 | /
/ | / | 1 | | ---------- dx | 2*x | 2 | ------------ dx | /-x \ | 2 | |---| + 1 | x + 0*x + 4 | \ 2 / | | / / ------------------ + ---------------- 2 4
/ | | 2*x | ------------ dx | 2 | x + 0*x + 4 | / ------------------ 2
2 u = x
/ | | 1 | ----- du | 4 + u | / log(4 + u) ----------- = ---------- 2 2
/ | | 2*x | ------------ dx | 2 | x + 0*x + 4 | / 2\ / log\4 + x / ------------------ = ----------- 2 2
/ | | 1 | ---------- dx | 2 | /-x \ | |---| + 1 | \ 2 / | / ---------------- 4
-x v = --- 2
/ | | 1 | ------ dv | 2 | 1 + v | / atan(v) ------------ = ------- 4 4
/ | | 1 | ---------- dx | 2 | /-x \ | |---| + 1 | \ 2 / /x\ | atan|-| / \2/ ---------------- = ------- 4 2
/x\ atan|-| / 2\ \2/ log\4 + x / C + ------- + ----------- 2 2
/ /x\ | atan|-| / 2\ | x + 1 \2/ log\4 + x / | ------ dx = C + ------- + ----------- | 2 2 2 | x + 4 | /
atan(1/2) log(5) log(4) --------- + ------ - ------ 2 2 2
=
atan(1/2) log(5) log(4) --------- + ------ - ------ 2 2 2
atan(1/2)/2 + log(5)/2 - log(4)/2
Use the examples entering the upper and lower limits of integration.