Mister Exam

Other calculators


(x+1)/(x^2+2x+1)

Integral of (x+1)/(x^2+2x+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |     x + 1       
 |  ------------ dx
 |   2             
 |  x  + 2*x + 1   
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{x + 1}{\left(x^{2} + 2 x\right) + 1}\, dx$$
Integral((x + 1)/(x^2 + 2*x + 1), (x, 0, 1))
Detail solution
We have the integral:
  /               
 |                
 |    x + 1       
 | ------------ dx
 |  2             
 | x  + 2*x + 1   
 |                
/                 
Rewrite the integrand
               /  2*x + 2   \
               |------------|
               | 2          |
   x + 1       \x  + 2*x + 1/
------------ = --------------
 2                   2       
x  + 2*x + 1                 
or
  /                 
 |                  
 |    x + 1         
 | ------------ dx  
 |  2              =
 | x  + 2*x + 1     
 |                  
/                   
  
  /               
 |                
 |   2*x + 2      
 | ------------ dx
 |  2             
 | x  + 2*x + 1   
 |                
/                 
------------------
        2         
In the integral
  /               
 |                
 |   2*x + 2      
 | ------------ dx
 |  2             
 | x  + 2*x + 1   
 |                
/                 
------------------
        2         
do replacement
     2      
u = x  + 2*x
then
the integral =
  /                     
 |                      
 |   1                  
 | ----- du             
 | 1 + u                
 |                      
/             log(1 + u)
----------- = ----------
     2            2     
do backward replacement
  /                            
 |                             
 |   2*x + 2                   
 | ------------ dx             
 |  2                          
 | x  + 2*x + 1                
 |                             
/                              
------------------ = log(1 + x)
        2                      
Solution is:
C + log(1 + x)
The answer (Indefinite) [src]
  /                                       
 |                          / 2          \
 |    x + 1              log\x  + 2*x + 1/
 | ------------ dx = C + -----------------
 |  2                            2        
 | x  + 2*x + 1                           
 |                                        
/                                         
$$\int \frac{x + 1}{\left(x^{2} + 2 x\right) + 1}\, dx = C + \frac{\log{\left(\left(x^{2} + 2 x\right) + 1 \right)}}{2}$$
The graph
The answer [src]
log(2)
$$\log{\left(2 \right)}$$
=
=
log(2)
$$\log{\left(2 \right)}$$
log(2)
Numerical answer [src]
0.693147180559945
0.693147180559945
The graph
Integral of (x+1)/(x^2+2x+1) dx

    Use the examples entering the upper and lower limits of integration.