Mister Exam

Integral of x+1 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |  (x + 1) dx
 |            
/             
0             
01(x+1)dx\int\limits_{0}^{1} \left(x + 1\right)\, dx
Integral(x + 1, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      xdx=x22\int x\, dx = \frac{x^{2}}{2}

    1. The integral of a constant is the constant times the variable of integration:

      1dx=x\int 1\, dx = x

    The result is: x22+x\frac{x^{2}}{2} + x

  2. Now simplify:

    x(x+2)2\frac{x \left(x + 2\right)}{2}

  3. Add the constant of integration:

    x(x+2)2+constant\frac{x \left(x + 2\right)}{2}+ \mathrm{constant}


The answer is:

x(x+2)2+constant\frac{x \left(x + 2\right)}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                      2
 |                      x 
 | (x + 1) dx = C + x + --
 |                      2 
/                         
(x+1)dx=C+x22+x\int \left(x + 1\right)\, dx = C + \frac{x^{2}}{2} + x
The graph
0.001.000.100.200.300.400.500.600.700.800.9004
The answer [src]
3/2
32\frac{3}{2}
=
=
3/2
32\frac{3}{2}
3/2
Numerical answer [src]
1.5
1.5
The graph
Integral of x+1 dx

    Use the examples entering the upper and lower limits of integration.