Mister Exam

Integral of (x+4) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0           
  /           
 |            
 |  (x + 4) dx
 |            
/             
-4            
40(x+4)dx\int\limits_{-4}^{0} \left(x + 4\right)\, dx
Integral(x + 4, (x, -4, 0))
Detail solution
  1. Integrate term-by-term:

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      xdx=x22\int x\, dx = \frac{x^{2}}{2}

    1. The integral of a constant is the constant times the variable of integration:

      4dx=4x\int 4\, dx = 4 x

    The result is: x22+4x\frac{x^{2}}{2} + 4 x

  2. Now simplify:

    x(x+8)2\frac{x \left(x + 8\right)}{2}

  3. Add the constant of integration:

    x(x+8)2+constant\frac{x \left(x + 8\right)}{2}+ \mathrm{constant}


The answer is:

x(x+8)2+constant\frac{x \left(x + 8\right)}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                  2      
 |                  x       
 | (x + 4) dx = C + -- + 4*x
 |                  2       
/                           
(x+4)dx=C+x22+4x\int \left(x + 4\right)\, dx = C + \frac{x^{2}}{2} + 4 x
The graph
-4.0-3.5-3.0-2.5-2.0-1.5-1.0-0.50.0-1010
The answer [src]
8
88
=
=
8
88
8
Numerical answer [src]
8.0
8.0
The graph
Integral of (x+4) dx

    Use the examples entering the upper and lower limits of integration.