Integral of (3÷(2×sqrt(3x+4))-x) dx
The solution
Detail solution
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−x)dx=−∫xdx
-
The integral of xn is n+1xn+1 when n=−1:
∫xdx=2x2
So, the result is: −2x2
-
The integral of a constant times a function is the constant times the integral of the function:
∫23x+43dx=3∫23x+41dx
-
Let u=23x+4.
Then let du=3x+43dx and substitute 6du:
∫61du
-
The integral of a constant times a function is the constant times the integral of the function:
-
The integral of a constant is the constant times the variable of integration:
∫1du=u
So, the result is: 6u
Now substitute u back in:
33x+4
So, the result is: 3x+4
The result is: −2x2+3x+4
-
Now simplify:
−2x2+3x+4
-
Add the constant of integration:
−2x2+3x+4+constant
The answer is:
−2x2+3x+4+constant
The answer (Indefinite)
[src]
/
| 2
| / 3 \ _________ x
| |------------- - x| dx = C + \/ 3*x + 4 - --
| | _________ | 2
| \2*\/ 3*x + 4 /
|
/
∫(−x+23x+43)dx=C−2x2+3x+4
The graph
__________ __________ 2
/ 3*pi / 3*pi 3*pi
/ 4 + ---- - / 4 + ---- - -----
\/ 2 \/ 4 32
−43π+4−323π2+4+23π
=
__________ __________ 2
/ 3*pi / 3*pi 3*pi
/ 4 + ---- - / 4 + ---- - -----
\/ 2 \/ 4 32
−43π+4−323π2+4+23π
sqrt(4 + 3*pi/2) - sqrt(4 + 3*pi/4) - 3*pi^2/32
Use the examples entering the upper and lower limits of integration.