pi -- 2 / | | / 3 \ | |------------- - x| dx | | _________ | | \2*\/ 3*x + 4 / | / pi -- 4
Integral(3/((2*sqrt(3*x + 4))) - x, (x, pi/4, pi/2))
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of a constant is the constant times the variable of integration:
So, the result is:
Now substitute back in:
So, the result is:
The result is:
Now simplify:
Add the constant of integration:
The answer is:
/ | 2 | / 3 \ _________ x | |------------- - x| dx = C + \/ 3*x + 4 - -- | | _________ | 2 | \2*\/ 3*x + 4 / | /
__________ __________ 2 / 3*pi / 3*pi 3*pi / 4 + ---- - / 4 + ---- - ----- \/ 2 \/ 4 32
=
__________ __________ 2 / 3*pi / 3*pi 3*pi / 4 + ---- - / 4 + ---- - ----- \/ 2 \/ 4 32
sqrt(4 + 3*pi/2) - sqrt(4 + 3*pi/4) - 3*pi^2/32
Use the examples entering the upper and lower limits of integration.