Mister Exam

Other calculators

Integral of (3÷(2×sqrt(3x+4))-x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi                       
 --                       
 2                        
  /                       
 |                        
 |  /      3          \   
 |  |------------- - x| dx
 |  |    _________    |   
 |  \2*\/ 3*x + 4     /   
 |                        
/                         
pi                        
--                        
4                         
π4π2(x+323x+4)dx\int\limits_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left(- x + \frac{3}{2 \sqrt{3 x + 4}}\right)\, dx
Integral(3/((2*sqrt(3*x + 4))) - x, (x, pi/4, pi/2))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      (x)dx=xdx\int \left(- x\right)\, dx = - \int x\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      So, the result is: x22- \frac{x^{2}}{2}

    1. The integral of a constant times a function is the constant times the integral of the function:

      323x+4dx=3123x+4dx\int \frac{3}{2 \sqrt{3 x + 4}}\, dx = 3 \int \frac{1}{2 \sqrt{3 x + 4}}\, dx

      1. Let u=23x+4u = 2 \sqrt{3 x + 4}.

        Then let du=3dx3x+4du = \frac{3 dx}{\sqrt{3 x + 4}} and substitute du6\frac{du}{6}:

        16du\int \frac{1}{6}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          False\text{False}

          1. The integral of a constant is the constant times the variable of integration:

            1du=u\int 1\, du = u

          So, the result is: u6\frac{u}{6}

        Now substitute uu back in:

        3x+43\frac{\sqrt{3 x + 4}}{3}

      So, the result is: 3x+4\sqrt{3 x + 4}

    The result is: x22+3x+4- \frac{x^{2}}{2} + \sqrt{3 x + 4}

  2. Now simplify:

    x22+3x+4- \frac{x^{2}}{2} + \sqrt{3 x + 4}

  3. Add the constant of integration:

    x22+3x+4+constant- \frac{x^{2}}{2} + \sqrt{3 x + 4}+ \mathrm{constant}


The answer is:

x22+3x+4+constant- \frac{x^{2}}{2} + \sqrt{3 x + 4}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                             
 |                                             2
 | /      3          \            _________   x 
 | |------------- - x| dx = C + \/ 3*x + 4  - --
 | |    _________    |                        2 
 | \2*\/ 3*x + 4     /                          
 |                                              
/                                               
(x+323x+4)dx=Cx22+3x+4\int \left(- x + \frac{3}{2 \sqrt{3 x + 4}}\right)\, dx = C - \frac{x^{2}}{2} + \sqrt{3 x + 4}
The graph
0.800.850.900.951.001.051.101.151.201.251.301.351.401.451.501.555-5
The answer [src]
    __________       __________       2
   /     3*pi       /     3*pi    3*pi 
  /  4 + ----  -   /  4 + ----  - -----
\/        2      \/        4        32 
3π4+43π232+4+3π2- \sqrt{\frac{3 \pi}{4} + 4} - \frac{3 \pi^{2}}{32} + \sqrt{4 + \frac{3 \pi}{2}}
=
=
    __________       __________       2
   /     3*pi       /     3*pi    3*pi 
  /  4 + ----  -   /  4 + ----  - -----
\/        2      \/        4        32 
3π4+43π232+4+3π2- \sqrt{\frac{3 \pi}{4} + 4} - \frac{3 \pi^{2}}{32} + \sqrt{4 + \frac{3 \pi}{2}}
sqrt(4 + 3*pi/2) - sqrt(4 + 3*pi/4) - 3*pi^2/32
Numerical answer [src]
-0.494749228405482
-0.494749228405482

    Use the examples entering the upper and lower limits of integration.