Integral of (x+5)^4 dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Let u=x+5.
Then let du=dx and substitute du:
∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
Now substitute u back in:
5(x+5)5
Method #2
-
Rewrite the integrand:
(x+5)4=x4+20x3+150x2+500x+625
-
Integrate term-by-term:
-
The integral of xn is n+1xn+1 when n=−1:
∫x4dx=5x5
-
The integral of a constant times a function is the constant times the integral of the function:
∫20x3dx=20∫x3dx
-
The integral of xn is n+1xn+1 when n=−1:
∫x3dx=4x4
So, the result is: 5x4
-
The integral of a constant times a function is the constant times the integral of the function:
∫150x2dx=150∫x2dx
-
The integral of xn is n+1xn+1 when n=−1:
∫x2dx=3x3
So, the result is: 50x3
-
The integral of a constant times a function is the constant times the integral of the function:
∫500xdx=500∫xdx
-
The integral of xn is n+1xn+1 when n=−1:
∫xdx=2x2
So, the result is: 250x2
-
The integral of a constant is the constant times the variable of integration:
∫625dx=625x
The result is: 5x5+5x4+50x3+250x2+625x
-
Now simplify:
5(x+5)5
-
Add the constant of integration:
5(x+5)5+constant
The answer is:
5(x+5)5+constant
The answer (Indefinite)
[src]
/
| 5
| 4 (x + 5)
| (x + 5) dx = C + --------
| 5
/
∫(x+5)4dx=C+5(x+5)5
The graph
54651
=
54651
Use the examples entering the upper and lower limits of integration.