Mister Exam

Other calculators

Integral of (x+cosx)/(x^2+2sinx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |    x + cos(x)    
 |  ------------- dx
 |   2              
 |  x  + 2*sin(x)   
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \frac{x + \cos{\left(x \right)}}{x^{2} + 2 \sin{\left(x \right)}}\, dx$$
Integral((x + cos(x))/(x^2 + 2*sin(x)), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is .

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                         
 |                           / 2           \
 |   x + cos(x)           log\x  + 2*sin(x)/
 | ------------- dx = C + ------------------
 |  2                             2         
 | x  + 2*sin(x)                            
 |                                          
/                                           
$${{\log \left(2\,\sin x+x^2\right)}\over{2}}$$
The answer [src]
oo
$${\it \%a}$$
=
=
oo
$$\infty$$
Numerical answer [src]
22.1921064478628
22.1921064478628

    Use the examples entering the upper and lower limits of integration.