Mister Exam

Other calculators

Integral of sqrt(e^x-9) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |     ________   
 |    /  x        
 |  \/  e  - 9  dx
 |                
/                 
0                 
$$\int\limits_{0}^{1} \sqrt{e^{x} - 9}\, dx$$
Integral(sqrt(E^x - 1*9), (x, 0, 1))
The answer (Indefinite) [src]
$$2\,\sqrt{e^{x}-9}-6\,\arctan \left({{\sqrt{e^{x}-9}}\over{3}} \right)$$
The answer [src]
        /  ________\                                       /    ___\
        |\/ -9 + e |       ________         ___            |2*\/ 2 |
- 6*atan|----------| + 2*\/ -9 + e  - 4*I*\/ 2  + 6*I*atanh|-------|
        \    3     /                                       \   3   /
$$-6\,\arctan \left({{\sqrt{e-9}}\over{3}}\right)+6\,i\, {\rm atanh}\; \left({{2^{{{3}\over{2}}}}\over{3}}\right)-2^{{{5 }\over{2}}}\,i+2\,\sqrt{e-9}$$
=
=
        /  ________\                                       /    ___\
        |\/ -9 + e |       ________         ___            |2*\/ 2 |
- 6*atan|----------| + 2*\/ -9 + e  - 4*I*\/ 2  + 6*I*atanh|-------|
        \    3     /                                       \   3   /
$$- 6 \operatorname{atan}{\left(\frac{\sqrt{-9 + e}}{3} \right)} - 4 \sqrt{2} i + 2 \sqrt{-9 + e} + 6 i \operatorname{atanh}{\left(\frac{2 \sqrt{2}}{3} \right)}$$
Numerical answer [src]
(0.0 + 2.69690386118959j)
(0.0 + 2.69690386118959j)

    Use the examples entering the upper and lower limits of integration.