Integral of sqrt(e^x-9) dx
The solution
The answer (Indefinite)
[src]
$$2\,\sqrt{e^{x}-9}-6\,\arctan \left({{\sqrt{e^{x}-9}}\over{3}}
\right)$$
/ ________\ / ___\
|\/ -9 + e | ________ ___ |2*\/ 2 |
- 6*atan|----------| + 2*\/ -9 + e - 4*I*\/ 2 + 6*I*atanh|-------|
\ 3 / \ 3 /
$$-6\,\arctan \left({{\sqrt{e-9}}\over{3}}\right)+6\,i\,
{\rm atanh}\; \left({{2^{{{3}\over{2}}}}\over{3}}\right)-2^{{{5
}\over{2}}}\,i+2\,\sqrt{e-9}$$
=
/ ________\ / ___\
|\/ -9 + e | ________ ___ |2*\/ 2 |
- 6*atan|----------| + 2*\/ -9 + e - 4*I*\/ 2 + 6*I*atanh|-------|
\ 3 / \ 3 /
$$- 6 \operatorname{atan}{\left(\frac{\sqrt{-9 + e}}{3} \right)} - 4 \sqrt{2} i + 2 \sqrt{-9 + e} + 6 i \operatorname{atanh}{\left(\frac{2 \sqrt{2}}{3} \right)}$$
(0.0 + 2.69690386118959j)
(0.0 + 2.69690386118959j)
Use the examples entering the upper and lower limits of integration.