Mister Exam

Integral of x+2y dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
       2            
 -4 + y             
    /               
   |                
   |    (x + 2*y) dx
   |                
  /                 
  5                 
$$\int\limits_{5}^{y^{2} - 4} \left(x + 2 y\right)\, dx$$
Integral(x + 2*y, (x, 5, -4 + y^2))
Detail solution
  1. Integrate term-by-term:

    1. The integral of is when :

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                    2        
 |                    x         
 | (x + 2*y) dx = C + -- + 2*x*y
 |                    2         
/                               
$$\int \left(x + 2 y\right)\, dx = C + \frac{x^{2}}{2} + 2 x y$$
The answer [src]
                2                       
       /      2\                        
  25   \-4 + y /               /      2\
- -- + ---------- - 10*y + 2*y*\-4 + y /
  2        2                            
$$2 y \left(y^{2} - 4\right) - 10 y + \frac{\left(y^{2} - 4\right)^{2}}{2} - \frac{25}{2}$$
=
=
                2                       
       /      2\                        
  25   \-4 + y /               /      2\
- -- + ---------- - 10*y + 2*y*\-4 + y /
  2        2                            
$$2 y \left(y^{2} - 4\right) - 10 y + \frac{\left(y^{2} - 4\right)^{2}}{2} - \frac{25}{2}$$
-25/2 + (-4 + y^2)^2/2 - 10*y + 2*y*(-4 + y^2)

    Use the examples entering the upper and lower limits of integration.