1 / | | n | x*(1 + x) dx | / 0
Integral(x*(1 + x)^n, (x, 0, 1))
// 1 log(1 + x) x*log(1 + x) \
|| ----- + ---------- + ------------ for n = -2|
/ || 1 + x 1 + x 1 + x |
| || |
| n || x - log(1 + x) for n = -1|
| x*(1 + x) dx = C + |< |
| || n 2 n n 2 n |
/ || (1 + x) x *(1 + x) n*x*(1 + x) n*x *(1 + x) |
||- ------------ + ------------ + ------------ + ------------- otherwise |
|| 2 2 2 2 |
\\ 2 + n + 3*n 2 + n + 3*n 2 + n + 3*n 2 + n + 3*n /
/ -1/2 + log(2) for n = -2 | | 1 - log(2) for n = -1 | < n | 1 2*n*2 |------------ + ------------ otherwise | 2 2 \2 + n + 3*n 2 + n + 3*n
=
/ -1/2 + log(2) for n = -2 | | 1 - log(2) for n = -1 | < n | 1 2*n*2 |------------ + ------------ otherwise | 2 2 \2 + n + 3*n 2 + n + 3*n
Piecewise((-1/2 + log(2), n = -2), (1 - log(2), n = -1), (1/(2 + n^2 + 3*n) + 2*n*2^n/(2 + n^2 + 3*n), True))
Use the examples entering the upper and lower limits of integration.