1 / | | n | x*(1 - x) dx | / 0
Integral(x*(1 - x)^n, (x, 0, 1))
// 1 log(-1 + x) x*log(-1 + x) \
|| - ------ - ----------- + ------------- for n = -2|
/ || -1 + x -1 + x -1 + x |
| || |
| n || -x - log(-1 + x) for n = -1|
| x*(1 - x) dx = C + |< |
| || n 2 n 2 n n |
/ || (1 - x) x *(1 - x) n*x *(1 - x) n*x*(1 - x) |
||- ------------ + ------------ + ------------- - ------------ otherwise |
|| 2 2 2 2 |
\\ 2 + n + 3*n 2 + n + 3*n 2 + n + 3*n 2 + n + 3*n /
/ oo - pi*I for n = -2 | | oo + pi*I for n = -1 | < 1 |------------ otherwise | 2 |2 + n + 3*n \
=
/ oo - pi*I for n = -2 | | oo + pi*I for n = -1 | < 1 |------------ otherwise | 2 |2 + n + 3*n \
Piecewise((oo - pi*i, n = -2), (oo + pi*i, n = -1), (1/(2 + n^2 + 3*n), True))
Use the examples entering the upper and lower limits of integration.