Integral of x(1-ln(x))²+1 dx
The solution
Detail solution
-
Integrate term-by-term:
-
There are multiple ways to do this integral.
Method #1
-
Rewrite the integrand:
x(1−log(x))2=xlog(x)2−2xlog(x)+x
-
Integrate term-by-term:
-
Let u=log(x).
Then let du=xdx and substitute du:
∫u2e2udu
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=u2 and let dv(u)=e2u.
Then du(u)=2u.
To find v(u):
-
Let u=2u.
Then let du=2du and substitute 2du:
∫2eudu
-
The integral of a constant times a function is the constant times the integral of the function:
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 2eu
Now substitute u back in:
2e2u
Now evaluate the sub-integral.
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=u and let dv(u)=e2u.
Then du(u)=1.
To find v(u):
-
Let u=2u.
Then let du=2du and substitute 2du:
∫2eudu
-
The integral of a constant times a function is the constant times the integral of the function:
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 2eu
Now substitute u back in:
2e2u
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫2e2udu=2∫e2udu
-
Let u=2u.
Then let du=2du and substitute 2du:
∫2eudu
-
The integral of a constant times a function is the constant times the integral of the function:
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 2eu
Now substitute u back in:
2e2u
So, the result is: 4e2u
Now substitute u back in:
2x2log(x)2−2x2log(x)+4x2
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2xlog(x))dx=−2∫xlog(x)dx
-
Let u=log(x).
Then let du=xdx and substitute du:
∫ue2udu
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=u and let dv(u)=e2u.
Then du(u)=1.
To find v(u):
-
Let u=2u.
Then let du=2du and substitute 2du:
∫2eudu
-
The integral of a constant times a function is the constant times the integral of the function:
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 2eu
Now substitute u back in:
2e2u
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫2e2udu=2∫e2udu
-
Let u=2u.
Then let du=2du and substitute 2du:
∫2eudu
-
The integral of a constant times a function is the constant times the integral of the function:
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 2eu
Now substitute u back in:
2e2u
So, the result is: 4e2u
Now substitute u back in:
2x2log(x)−4x2
So, the result is: −x2log(x)+2x2
-
The integral of xn is n+1xn+1 when n=−1:
∫xdx=2x2
The result is: 2x2log(x)2−23x2log(x)+45x2
Method #2
-
Rewrite the integrand:
x(1−log(x))2=xlog(x)2−2xlog(x)+x
-
Integrate term-by-term:
-
Let u=log(x).
Then let du=xdx and substitute du:
∫u2e2udu
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=u2 and let dv(u)=e2u.
Then du(u)=2u.
To find v(u):
-
Let u=2u.
Then let du=2du and substitute 2du:
∫2eudu
-
The integral of a constant times a function is the constant times the integral of the function:
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 2eu
Now substitute u back in:
2e2u
Now evaluate the sub-integral.
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=u and let dv(u)=e2u.
Then du(u)=1.
To find v(u):
-
Let u=2u.
Then let du=2du and substitute 2du:
∫2eudu
-
The integral of a constant times a function is the constant times the integral of the function:
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 2eu
Now substitute u back in:
2e2u
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫2e2udu=2∫e2udu
-
Let u=2u.
Then let du=2du and substitute 2du:
∫2eudu
-
The integral of a constant times a function is the constant times the integral of the function:
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 2eu
Now substitute u back in:
2e2u
So, the result is: 4e2u
Now substitute u back in:
2x2log(x)2−2x2log(x)+4x2
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2xlog(x))dx=−2∫xlog(x)dx
-
Let u=log(x).
Then let du=xdx and substitute du:
∫ue2udu
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=u and let dv(u)=e2u.
Then du(u)=1.
To find v(u):
-
Let u=2u.
Then let du=2du and substitute 2du:
∫2eudu
-
The integral of a constant times a function is the constant times the integral of the function:
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 2eu
Now substitute u back in:
2e2u
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫2e2udu=2∫e2udu
-
Let u=2u.
Then let du=2du and substitute 2du:
∫2eudu
-
The integral of a constant times a function is the constant times the integral of the function:
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 2eu
Now substitute u back in:
2e2u
So, the result is: 4e2u
Now substitute u back in:
2x2log(x)−4x2
So, the result is: −x2log(x)+2x2
-
The integral of xn is n+1xn+1 when n=−1:
∫xdx=2x2
The result is: 2x2log(x)2−23x2log(x)+45x2
-
The integral of a constant is the constant times the variable of integration:
∫1dx=x
The result is: 2x2log(x)2−23x2log(x)+45x2+x
-
Now simplify:
4x(2xlog(x)2−6xlog(x)+5x+4)
-
Add the constant of integration:
4x(2xlog(x)2−6xlog(x)+5x+4)+constant
The answer is:
4x(2xlog(x)2−6xlog(x)+5x+4)+constant
The answer (Indefinite)
[src]
/
| 2 2 2 2
| / 2 \ 5*x x *log (x) 3*x *log(x)
| \x*(1 - log(x)) + 1/ dx = C + x + ---- + ---------- - -----------
| 4 2 2
/
∫(x(1−log(x))2+1)dx=C+2x2log(x)2−23x2log(x)+45x2+x
The graph
2
27*log(3) 9*log (3)
12 - --------- + ---------
2 2
−227log(3)+29log(3)2+12
=
2
27*log(3) 9*log (3)
12 - --------- + ---------
2 2
−227log(3)+29log(3)2+12
12 - 27*log(3)/2 + 9*log(3)^2/2
Use the examples entering the upper and lower limits of integration.