Mister Exam

Other calculators

Integral of x(1-cos(2/x^2)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo                   
  /                   
 |                    
 |    /       /2 \\   
 |  x*|1 - cos|--|| dx
 |    |       | 2||   
 |    \       \x //   
 |                    
/                     
1                     
$$\int\limits_{1}^{\infty} x \left(1 - \cos{\left(\frac{2}{x^{2}} \right)}\right)\, dx$$
Integral(x*(1 - cos(2/x^2)), (x, 1, oo))
The answer (Indefinite) [src]
                                           2    /2 \
  /                                       x *cos|--|
 |                           2                  | 2|
 |   /       /2 \\          x      /2 \         \x /
 | x*|1 - cos|--|| dx = C + -- - Si|--| - ----------
 |   |       | 2||          2      | 2|       2     
 |   \       \x //                 \x /             
 |                                                  
/                                                   
$$\int x \left(1 - \cos{\left(\frac{2}{x^{2}} \right)}\right)\, dx = C - \frac{x^{2} \cos{\left(\frac{2}{x^{2}} \right)}}{2} + \frac{x^{2}}{2} - \operatorname{Si}{\left(\frac{2}{x^{2}} \right)}$$

    Use the examples entering the upper and lower limits of integration.