1 / | | __________ | / 2 | \/ 1 - 4*x dx | / 0
Integral(sqrt(1 - 4*x^2), (x, 0, 1))
TrigSubstitutionRule(theta=_theta, func=sin(_theta)/2, rewritten=cos(_theta)**2/2, substep=ConstantTimesRule(constant=1/2, other=cos(_theta)**2, substep=RewriteRule(rewritten=cos(2*_theta)/2 + 1/2, substep=AddRule(substeps=[ConstantTimesRule(constant=1/2, other=cos(2*_theta), substep=URule(u_var=_u, u_func=2*_theta, constant=1/2, substep=ConstantTimesRule(constant=1/2, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u), symbol=_u), context=cos(2*_theta), symbol=_theta), context=cos(2*_theta)/2, symbol=_theta), ConstantRule(constant=1/2, context=1/2, symbol=_theta)], context=cos(2*_theta)/2 + 1/2, symbol=_theta), context=cos(_theta)**2, symbol=_theta), context=cos(_theta)**2/2, symbol=_theta), restriction=(x > -1/2) & (x < 1/2), context=sqrt(1 - 4*x**2), symbol=x)
Add the constant of integration:
The answer is:
/ | | __________ // __________ \ | / 2 || / 2 | | \/ 1 - 4*x dx = C + |-1/2, x < 1/2)| / \\ 4 2 /
___ asin(2) I*\/ 3 ------- + ------- 4 2
=
___ asin(2) I*\/ 3 ------- + ------- 4 2
asin(2)/4 + i*sqrt(3)/2
(0.392134269538859 + 0.536220266948917j)
(0.392134269538859 + 0.536220266948917j)
Use the examples entering the upper and lower limits of integration.