Mister Exam

Other calculators

Integral of x*y*(x+y) dy

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2 - 2*x              
    /                 
   |                  
   |    x*y*(x + y) dy
   |                  
  /                   
  0                   
$$\int\limits_{0}^{2 - 2 x} x y \left(x + y\right)\, dy$$
Integral((x*y)*(x + y), (y, 0, 2 - 2*x))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                      2  2      3
 |                      x *y    x*y 
 | x*y*(x + y) dy = C + ----- + ----
 |                        2      3  
/                                   
$$\int x y \left(x + y\right)\, dy = C + \frac{x^{2} y^{2}}{2} + \frac{x y^{3}}{3}$$
The answer [src]
 2          2              3
x *(2 - 2*x)    x*(2 - 2*x) 
------------- + ------------
      2              3      
$$\frac{x^{2} \left(2 - 2 x\right)^{2}}{2} + \frac{x \left(2 - 2 x\right)^{3}}{3}$$
=
=
 2          2              3
x *(2 - 2*x)    x*(2 - 2*x) 
------------- + ------------
      2              3      
$$\frac{x^{2} \left(2 - 2 x\right)^{2}}{2} + \frac{x \left(2 - 2 x\right)^{3}}{3}$$
x^2*(2 - 2*x)^2/2 + x*(2 - 2*x)^3/3

    Use the examples entering the upper and lower limits of integration.