Mister Exam

Other calculators


x*sqrt(1-x^2)dx

Integral of x*sqrt(1-x^2)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |       ________     
 |      /      2      
 |  x*\/  1 - x  *1 dx
 |                    
/                     
0                     
$$\int\limits_{0}^{1} x \sqrt{- x^{2} + 1} \cdot 1\, dx$$
Integral(x*sqrt(1 - x^2)*1, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    SqrtQuadraticDenomRule(a=1, b=0, c=-1, coeffs=[-1, 0, 1, 0], context=(-x**3 + x)/sqrt(1 - x**2), symbol=x)

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                               
 |                                                
 |      ________               ________ /       2\
 |     /      2               /      2  |  1   x |
 | x*\/  1 - x  *1 dx = C + \/  1 - x  *|- - + --|
 |                                      \  3   3 /
/                                                 
$$-{{\left(1-x^2\right)^{{{3}\over{2}}}}\over{3}}$$
The graph
The answer [src]
1/3
$${{1}\over{3}}$$
=
=
1/3
$$\frac{1}{3}$$
Numerical answer [src]
0.333333333333333
0.333333333333333
The graph
Integral of x*sqrt(1-x^2)dx dx

    Use the examples entering the upper and lower limits of integration.