Mister Exam

Other calculators


1/(x^2-9)

Integral of 1/(x^2-9) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |    1      
 |  ------ dx
 |   2       
 |  x  - 9   
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{1}{x^{2} - 9}\, dx$$
Integral(1/(x^2 - 9), (x, 0, 1))
Detail solution

    PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=1, c=-9, context=1/(x**2 - 9), symbol=x), False), (ArccothRule(a=1, b=1, c=-9, context=1/(x**2 - 9), symbol=x), x**2 > 9), (ArctanhRule(a=1, b=1, c=-9, context=1/(x**2 - 9), symbol=x), x**2 < 9)], context=1/(x**2 - 9), symbol=x)

  1. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
                   //      /x\             \
                   ||-acoth|-|             |
  /                ||      \3/        2    |
 |                 ||----------  for x  > 9|
 |   1             ||    3                 |
 | ------ dx = C + |<                      |
 |  2              ||      /x\             |
 | x  - 9          ||-atanh|-|             |
 |                 ||      \3/        2    |
/                  ||----------  for x  < 9|
                   \\    3                 /
$$\int \frac{1}{x^{2} - 9}\, dx = C + \begin{cases} - \frac{\operatorname{acoth}{\left(\frac{x}{3} \right)}}{3} & \text{for}\: x^{2} > 9 \\- \frac{\operatorname{atanh}{\left(\frac{x}{3} \right)}}{3} & \text{for}\: x^{2} < 9 \end{cases}$$
The graph
The answer [src]
  log(4)   log(2)
- ------ + ------
    6        6   
$$- \frac{\log{\left(4 \right)}}{6} + \frac{\log{\left(2 \right)}}{6}$$
=
=
  log(4)   log(2)
- ------ + ------
    6        6   
$$- \frac{\log{\left(4 \right)}}{6} + \frac{\log{\left(2 \right)}}{6}$$
-log(4)/6 + log(2)/6
Numerical answer [src]
-0.115524530093324
-0.115524530093324
The graph
Integral of 1/(x^2-9) dx

    Use the examples entering the upper and lower limits of integration.