1 / | | 1 | ------ dx | 2 | x - 9 | / 0
Integral(1/(x^2 - 9), (x, 0, 1))
PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=1, c=-9, context=1/(x**2 - 9), symbol=x), False), (ArccothRule(a=1, b=1, c=-9, context=1/(x**2 - 9), symbol=x), x**2 > 9), (ArctanhRule(a=1, b=1, c=-9, context=1/(x**2 - 9), symbol=x), x**2 < 9)], context=1/(x**2 - 9), symbol=x)
Add the constant of integration:
The answer is:
// /x\ \
||-acoth|-| |
/ || \3/ 2 |
| ||---------- for x > 9|
| 1 || 3 |
| ------ dx = C + |< |
| 2 || /x\ |
| x - 9 ||-atanh|-| |
| || \3/ 2 |
/ ||---------- for x < 9|
\\ 3 /
log(4) log(2)
- ------ + ------
6 6
=
log(4) log(2)
- ------ + ------
6 6
-log(4)/6 + log(2)/6
Use the examples entering the upper and lower limits of integration.