Mister Exam

Other calculators

Integral of (x*sin(x)/2)*dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |  x*sin(x)   
 |  -------- dx
 |     2       
 |             
/              
0              
$$\int\limits_{0}^{1} \frac{x \sin{\left(x \right)}}{2}\, dx$$
Integral((x*sin(x))/2, (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Use integration by parts:

      Let and let .

      Then .

      To find :

      1. The integral of sine is negative cosine:

      Now evaluate the sub-integral.

    2. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of cosine is sine:

      So, the result is:

    So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                   
 |                                    
 | x*sin(x)          sin(x)   x*cos(x)
 | -------- dx = C + ------ - --------
 |    2                2         2    
 |                                    
/                                     
$$\int \frac{x \sin{\left(x \right)}}{2}\, dx = C - \frac{x \cos{\left(x \right)}}{2} + \frac{\sin{\left(x \right)}}{2}$$
The graph
The answer [src]
sin(1)   cos(1)
------ - ------
  2        2   
$$- \frac{\cos{\left(1 \right)}}{2} + \frac{\sin{\left(1 \right)}}{2}$$
=
=
sin(1)   cos(1)
------ - ------
  2        2   
$$- \frac{\cos{\left(1 \right)}}{2} + \frac{\sin{\left(1 \right)}}{2}$$
sin(1)/2 - cos(1)/2
Numerical answer [src]
0.150584339469878
0.150584339469878

    Use the examples entering the upper and lower limits of integration.