Mister Exam

Other calculators

Integral of e^x*sin(x/2)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |   x    /x\   
 |  E *sin|-| dx
 |        \2/   
 |              
/               
0               
$$\int\limits_{0}^{1} e^{x} \sin{\left(\frac{x}{2} \right)}\, dx$$
Integral(E^x*sin(x/2), (x, 0, 1))
The answer (Indefinite) [src]
  /                     /            
 |                     |             
 |  x    /x\           |  x    /x\   
 | E *sin|-| dx = C +  | e *sin|-| dx
 |       \2/           |       \2/   
 |                     |             
/                     /              
$$\int e^{x} \sin{\left(\frac{x}{2} \right)}\, dx = C + \int e^{x} \sin{\left(\frac{x}{2} \right)}\, dx$$
The graph
The answer [src]
2   2*E*cos(1/2)   4*E*sin(1/2)
- - ------------ + ------------
5        5              5      
$$- \frac{2 e \cos{\left(\frac{1}{2} \right)}}{5} + \frac{2}{5} + \frac{4 e \sin{\left(\frac{1}{2} \right)}}{5}$$
=
=
2   2*E*cos(1/2)   4*E*sin(1/2)
- - ------------ + ------------
5        5              5      
$$- \frac{2 e \cos{\left(\frac{1}{2} \right)}}{5} + \frac{2}{5} + \frac{4 e \sin{\left(\frac{1}{2} \right)}}{5}$$
2/5 - 2*E*cos(1/2)/5 + 4*E*sin(1/2)/5
Numerical answer [src]
0.488364291365942
0.488364291365942

    Use the examples entering the upper and lower limits of integration.