Mister Exam

Other calculators

Integral of x*sinx/3dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |  x*sin(x)   
 |  -------- dx
 |     3       
 |             
/              
0              
$$\int\limits_{0}^{1} \frac{x \sin{\left(x \right)}}{3}\, dx$$
Integral((x*sin(x))/3, (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Use integration by parts:

      Let and let .

      Then .

      To find :

      1. The integral of sine is negative cosine:

      Now evaluate the sub-integral.

    2. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of cosine is sine:

      So, the result is:

    So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                   
 |                                    
 | x*sin(x)          sin(x)   x*cos(x)
 | -------- dx = C + ------ - --------
 |    3                3         3    
 |                                    
/                                     
$$\int \frac{x \sin{\left(x \right)}}{3}\, dx = C - \frac{x \cos{\left(x \right)}}{3} + \frac{\sin{\left(x \right)}}{3}$$
The graph
The answer [src]
  cos(1)   sin(1)
- ------ + ------
    3        3   
$$- \frac{\cos{\left(1 \right)}}{3} + \frac{\sin{\left(1 \right)}}{3}$$
=
=
  cos(1)   sin(1)
- ------ + ------
    3        3   
$$- \frac{\cos{\left(1 \right)}}{3} + \frac{\sin{\left(1 \right)}}{3}$$
-cos(1)/3 + sin(1)/3
Numerical answer [src]
0.100389559646586
0.100389559646586

    Use the examples entering the upper and lower limits of integration.