Mister Exam

Other calculators

Integral of 1/xsin(1/x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo          
  /          
 |           
 |     /1\   
 |  sin|-|   
 |     \x/   
 |  ------ dx
 |    x      
 |           
/            
1            
$$\int\limits_{1}^{\infty} \frac{\sin{\left(\frac{1}{x} \right)}}{x}\, dx$$
Integral(sin(1/x)/x, (x, 1, oo))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

        SiRule(a=1, b=0, context=sin(_u)/_u, symbol=_u)

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                     
 |                      
 |    /1\               
 | sin|-|               
 |    \x/            /1\
 | ------ dx = C - Si|-|
 |   x               \x/
 |                      
/                       
$$\int \frac{\sin{\left(\frac{1}{x} \right)}}{x}\, dx = C - \operatorname{Si}{\left(\frac{1}{x} \right)}$$
The graph
The answer [src]
Si(1)
$$\operatorname{Si}{\left(1 \right)}$$
=
=
Si(1)
$$\operatorname{Si}{\left(1 \right)}$$
Si(1)

    Use the examples entering the upper and lower limits of integration.