Mister Exam

Other calculators


(x*dx)/(1+x-x^2)

Integral of (x*dx)/(1+x-x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |          1        
 |  x*1*---------- dx
 |               2   
 |      1 + x - x    
 |                   
/                    
0                    
$$\int\limits_{0}^{1} x 1 \cdot \frac{1}{- x^{2} + x + 1}\, dx$$
Integral(x*1/(1 + x - x^2), (x, 0, 1))
The answer (Indefinite) [src]
                                                   /     /            ___\      /            ___\\
  /                                            ___ |     |  1       \/ 5 |      |  1       \/ 5 ||
 |                            /         2\   \/ 5 *|- log|- - + x + -----| + log|- - + x - -----||
 |         1               log\1 + x - x /         \     \  2         2  /      \  2         2  //
 | x*1*---------- dx = C - --------------- - -----------------------------------------------------
 |              2                 2                                    10                         
 |     1 + x - x                                                                                  
 |                                                                                                
/                                                                                                 
$$-{{\log \left({{2\,x-\sqrt{5}-1}\over{2\,x+\sqrt{5}-1}}\right) }\over{2\,\sqrt{5}}}-{{\log \left(x^2-x-1\right)}\over{2}}$$
The graph
The answer [src]
/      ___\    /        ___\   /      ___\ /          /      ___\\   /      ___\    /      ___\   /      ___\ /          /        ___\\
|1   \/ 5 |    |  1   \/ 5 |   |1   \/ 5 | |          |1   \/ 5 ||   |1   \/ 5 |    |1   \/ 5 |   |1   \/ 5 | |          |  1   \/ 5 ||
|- - -----|*log|- - + -----| + |- + -----|*|pi*I + log|- + -----|| - |- - -----|*log|- + -----| - |- + -----|*|pi*I + log|- - + -----||
\2     10 /    \  2     2  /   \2     10 / \          \2     2  //   \2     10 /    \2     2  /   \2     10 / \          \  2     2  //
$${{\log \left({{\sqrt{5}+3}\over{2}}\right)}\over{2\,\sqrt{5}}}-{{ \log \left(-{{\sqrt{5}-3}\over{2}}\right)}\over{2\,\sqrt{5}}}$$
=
=
/      ___\    /        ___\   /      ___\ /          /      ___\\   /      ___\    /      ___\   /      ___\ /          /        ___\\
|1   \/ 5 |    |  1   \/ 5 |   |1   \/ 5 | |          |1   \/ 5 ||   |1   \/ 5 |    |1   \/ 5 |   |1   \/ 5 | |          |  1   \/ 5 ||
|- - -----|*log|- - + -----| + |- + -----|*|pi*I + log|- + -----|| - |- - -----|*log|- + -----| - |- + -----|*|pi*I + log|- - + -----||
\2     10 /    \  2     2  /   \2     10 / \          \2     2  //   \2     10 /    \2     2  /   \2     10 / \          \  2     2  //
$$\left(- \frac{\sqrt{5}}{10} + \frac{1}{2}\right) \log{\left(- \frac{1}{2} + \frac{\sqrt{5}}{2} \right)} - \left(- \frac{\sqrt{5}}{10} + \frac{1}{2}\right) \log{\left(\frac{1}{2} + \frac{\sqrt{5}}{2} \right)} - \left(\frac{\sqrt{5}}{10} + \frac{1}{2}\right) \left(\log{\left(- \frac{1}{2} + \frac{\sqrt{5}}{2} \right)} + i \pi\right) + \left(\frac{\sqrt{5}}{10} + \frac{1}{2}\right) \left(\log{\left(\frac{1}{2} + \frac{\sqrt{5}}{2} \right)} + i \pi\right)$$
Numerical answer [src]
0.430408940964004
0.430408940964004
The graph
Integral of (x*dx)/(1+x-x^2) dx

    Use the examples entering the upper and lower limits of integration.