1 / | | x*asin(2*x) dx | / 0
Integral(x*asin(2*x), (x, 0, 1))
Use integration by parts:
Let and let .
Then .
To find :
The integral of is when :
Now evaluate the sub-integral.
TrigSubstitutionRule(theta=_theta, func=sin(_theta)/2, rewritten=sin(_theta)**2/8, substep=ConstantTimesRule(constant=1/8, other=sin(_theta)**2, substep=RewriteRule(rewritten=1/2 - cos(2*_theta)/2, substep=AddRule(substeps=[ConstantRule(constant=1/2, context=1/2, symbol=_theta), ConstantTimesRule(constant=-1/2, other=cos(2*_theta), substep=URule(u_var=_u, u_func=2*_theta, constant=1/2, substep=ConstantTimesRule(constant=1/2, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u), symbol=_u), context=cos(2*_theta), symbol=_theta), context=-cos(2*_theta)/2, symbol=_theta)], context=1/2 - cos(2*_theta)/2, symbol=_theta), context=sin(_theta)**2, symbol=_theta), context=sin(_theta)**2/8, symbol=_theta), restriction=(x > -1/2) & (x < 1/2), context=x**2/sqrt(1 - 4*x**2), symbol=x)
Now simplify:
Add the constant of integration:
The answer is:
/ // __________ \ 2 | || / 2 | x *asin(2*x) | x*asin(2*x) dx = C - |-1/2, x < 1/2)| 2 / \\ 16 8 /
___ 7*asin(2) I*\/ 3 --------- + ------- 16 8
=
___ 7*asin(2) I*\/ 3 --------- + ------- 16 8
7*asin(2)/16 + i*sqrt(3)/8
(0.687505232320913 - 0.359379330459425j)
(0.687505232320913 - 0.359379330459425j)
Use the examples entering the upper and lower limits of integration.