Mister Exam

Other calculators


x*arcsin(2*x)

Integral of x*arcsin(2*x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |  x*asin(2*x) dx
 |                
/                 
0                 
$$\int\limits_{0}^{1} x \operatorname{asin}{\left(2 x \right)}\, dx$$
Integral(x*asin(2*x), (x, 0, 1))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. The integral of is when :

    Now evaluate the sub-integral.

    TrigSubstitutionRule(theta=_theta, func=sin(_theta)/2, rewritten=sin(_theta)**2/8, substep=ConstantTimesRule(constant=1/8, other=sin(_theta)**2, substep=RewriteRule(rewritten=1/2 - cos(2*_theta)/2, substep=AddRule(substeps=[ConstantRule(constant=1/2, context=1/2, symbol=_theta), ConstantTimesRule(constant=-1/2, other=cos(2*_theta), substep=URule(u_var=_u, u_func=2*_theta, constant=1/2, substep=ConstantTimesRule(constant=1/2, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u), symbol=_u), context=cos(2*_theta), symbol=_theta), context=-cos(2*_theta)/2, symbol=_theta)], context=1/2 - cos(2*_theta)/2, symbol=_theta), context=sin(_theta)**2, symbol=_theta), context=sin(_theta)**2/8, symbol=_theta), restriction=(x > -1/2) & (x < 1/2), context=x**2/sqrt(1 - 4*x**2), symbol=x)

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                     //                 __________                            \    2          
 |                      ||                /        2                             |   x *asin(2*x)
 | x*asin(2*x) dx = C - | -1/2, x < 1/2)|        2      
/                       \\    16             8                                   /               
$$\int x \operatorname{asin}{\left(2 x \right)}\, dx = C + \frac{x^{2} \operatorname{asin}{\left(2 x \right)}}{2} - \begin{cases} - \frac{x \sqrt{1 - 4 x^{2}}}{8} + \frac{\operatorname{asin}{\left(2 x \right)}}{16} & \text{for}\: x > - \frac{1}{2} \wedge x < \frac{1}{2} \end{cases}$$
The graph
The answer [src]
                ___
7*asin(2)   I*\/ 3 
--------- + -------
    16         8   
$$\frac{7 \operatorname{asin}{\left(2 \right)}}{16} + \frac{\sqrt{3} i}{8}$$
=
=
                ___
7*asin(2)   I*\/ 3 
--------- + -------
    16         8   
$$\frac{7 \operatorname{asin}{\left(2 \right)}}{16} + \frac{\sqrt{3} i}{8}$$
7*asin(2)/16 + i*sqrt(3)/8
Numerical answer [src]
(0.687505232320913 - 0.359379330459425j)
(0.687505232320913 - 0.359379330459425j)
The graph
Integral of x*arcsin(2*x) dx

    Use the examples entering the upper and lower limits of integration.