Mister Exam

Other calculators

Integral of x*a*sin(x/a) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |         /x\   
 |  x*a*sin|-| dx
 |         \a/   
 |               
/                
0                
$$\int\limits_{0}^{1} a x \sin{\left(\frac{x}{a} \right)}\, dx$$
Integral((x*a)*sin(x/a), (x, 0, 1))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of sine is negative cosine:

        So, the result is:

      Now substitute back in:

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of cosine is sine:

        So, the result is:

      Now substitute back in:

    So, the result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                           
 |                                            
 |        /x\           3    /x\      2    /x\
 | x*a*sin|-| dx = C + a *sin|-| - x*a *cos|-|
 |        \a/                \a/           \a/
 |                                            
/                                             
$$\int a x \sin{\left(\frac{x}{a} \right)}\, dx = C + a^{3} \sin{\left(\frac{x}{a} \right)} - a^{2} x \cos{\left(\frac{x}{a} \right)}$$
The answer [src]
  / 2    /1\        /1\\
a*|a *sin|-| - a*cos|-||
  \      \a/        \a//
$$a \left(a^{2} \sin{\left(\frac{1}{a} \right)} - a \cos{\left(\frac{1}{a} \right)}\right)$$
=
=
  / 2    /1\        /1\\
a*|a *sin|-| - a*cos|-||
  \      \a/        \a//
$$a \left(a^{2} \sin{\left(\frac{1}{a} \right)} - a \cos{\left(\frac{1}{a} \right)}\right)$$
a*(a^2*sin(1/a) - a*cos(1/a))

    Use the examples entering the upper and lower limits of integration.