Mister Exam

Other calculators


(x-x^2)^2

Integral of (x-x^2)^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2             
  /             
 |              
 |          2   
 |  /     2\    
 |  \x - x /  dx
 |              
/               
0               
$$\int\limits_{0}^{2} \left(- x^{2} + x\right)^{2}\, dx$$
Integral((x - x^2)^2, (x, 0, 2))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of is when :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of is when :

    The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                               
 |                                
 |         2           4    3    5
 | /     2\           x    x    x 
 | \x - x /  dx = C - -- + -- + --
 |                    2    3    5 
/                                 
$$\int \left(- x^{2} + x\right)^{2}\, dx = C + \frac{x^{5}}{5} - \frac{x^{4}}{2} + \frac{x^{3}}{3}$$
The graph
The answer [src]
16
--
15
$$\frac{16}{15}$$
=
=
16
--
15
$$\frac{16}{15}$$
Numerical answer [src]
1.06666666666667
1.06666666666667
The graph
Integral of (x-x^2)^2 dx

    Use the examples entering the upper and lower limits of integration.