Integral of x-x^3 dx
The solution
Detail solution
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−x3)dx=−∫x3dx
-
The integral of xn is n+1xn+1 when n=−1:
∫x3dx=4x4
So, the result is: −4x4
-
The integral of xn is n+1xn+1 when n=−1:
∫xdx=2x2
The result is: −4x4+2x2
-
Now simplify:
4x2(2−x2)
-
Add the constant of integration:
4x2(2−x2)+constant
The answer is:
4x2(2−x2)+constant
The answer (Indefinite)
[src]
/
| 2 4
| / 3\ x x
| \x - x / dx = C + -- - --
| 2 4
/
∫(−x3+x)dx=C−4x4+2x2
The graph
Use the examples entering the upper and lower limits of integration.