Mister Exam

Integral of x-x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2           
  /           
 |            
 |  (x - x) dx
 |            
/             
1             
12(x+x)dx\int\limits_{1}^{2} \left(- x + x\right)\, dx
Integral(x - x, (x, 1, 2))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      (x)dx=xdx\int \left(- x\right)\, dx = - \int x\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      So, the result is: x22- \frac{x^{2}}{2}

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      xdx=x22\int x\, dx = \frac{x^{2}}{2}

    The result is: 00


The answer is:

0+constant0+ \mathrm{constant}

The answer (Indefinite) [src]
  /              
 |               
 | (x - x) dx = C
 |               
/                
(x+x)dx=C\int \left(- x + x\right)\, dx = C
The graph
1.002.001.101.201.301.401.501.601.701.801.9001
The answer [src]
0
00
=
=
0
00
0
Numerical answer [src]
0.0
0.0
The graph
Integral of x-x dx

    Use the examples entering the upper and lower limits of integration.