Mister Exam

Other calculators


(x-3)(x+2)

Integral of (x-3)(x+2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |  (x - 3)*(x + 2) dx
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \left(x - 3\right) \left(x + 2\right)\, dx$$
Integral((x - 3)*(x + 2), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of is when :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                2    3
 |                                x    x 
 | (x - 3)*(x + 2) dx = C - 6*x - -- + --
 |                                2    3 
/                                        
$$\int \left(x - 3\right) \left(x + 2\right)\, dx = C + \frac{x^{3}}{3} - \frac{x^{2}}{2} - 6 x$$
The graph
The answer [src]
-37/6
$$- \frac{37}{6}$$
=
=
-37/6
$$- \frac{37}{6}$$
-37/6
Numerical answer [src]
-6.16666666666667
-6.16666666666667
The graph
Integral of (x-3)(x+2) dx

    Use the examples entering the upper and lower limits of integration.