1 / | | x - 6 | -------- dx | 7 | (x - 7) | / 0
Integral((x - 6)/(x - 7)^7, (x, 0, 1))
There are multiple ways to do this integral.
Rewrite the integrand:
Integrate term-by-term:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
The result is:
Rewrite the integrand:
Rewrite the integrand:
Integrate term-by-term:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
The result is:
Rewrite the integrand:
Integrate term-by-term:
Rewrite the integrand:
Integrate term-by-term:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
So, the result is:
The result is:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
So, the result is:
The result is:
Now simplify:
Add the constant of integration:
The answer is:
/ | | x - 6 1 1 | -------- dx = C - ----------- - ----------- | 7 5 6 | (x - 7) 5*(-7 + x) 6*(-7 + x) | /
1920847 ------------ 164670952320
=
1920847 ------------ 164670952320
1920847/164670952320
Use the examples entering the upper and lower limits of integration.