Mister Exam

Other calculators

Integral of (x-6)/(x-7)^7 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |   x - 6     
 |  -------- dx
 |         7   
 |  (x - 7)    
 |             
/              
0              
$$\int\limits_{0}^{1} \frac{x - 6}{\left(x - 7\right)^{7}}\, dx$$
Integral((x - 6)/(x - 7)^7, (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Let .

        Then let and substitute :

        1. The integral of is when :

        Now substitute back in:

      1. Let .

        Then let and substitute :

        1. The integral of is when :

        Now substitute back in:

      The result is:

    Method #2

    1. Rewrite the integrand:

    2. Rewrite the integrand:

    3. Integrate term-by-term:

      1. Let .

        Then let and substitute :

        1. The integral of is when :

        Now substitute back in:

      1. Let .

        Then let and substitute :

        1. The integral of is when :

        Now substitute back in:

      The result is:

    Method #3

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Rewrite the integrand:

      2. Integrate term-by-term:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of is when :

            Now substitute back in:

          So, the result is:

        The result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Rewrite the integrand:

        2. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                           
 |                                            
 |  x - 6                 1             1     
 | -------- dx = C - ----------- - -----------
 |        7                    5             6
 | (x - 7)           5*(-7 + x)    6*(-7 + x) 
 |                                            
/                                             
$$\int \frac{x - 6}{\left(x - 7\right)^{7}}\, dx = C - \frac{1}{5 \left(x - 7\right)^{5}} - \frac{1}{6 \left(x - 7\right)^{6}}$$
The graph
The answer [src]
  1920847   
------------
164670952320
$$\frac{1920847}{164670952320}$$
=
=
  1920847   
------------
164670952320
$$\frac{1920847}{164670952320}$$
1920847/164670952320
Numerical answer [src]
1.16647591632754e-5
1.16647591632754e-5

    Use the examples entering the upper and lower limits of integration.