1 / | | x - 1 | ---------- dx | 2 | x - x + 1 | / 0
Integral((x - 1)/(x^2 - x + 1), (x, 0, 1))
/ | | x - 1 | ---------- dx | 2 | x - x + 1 | /
/ 2*x - 1 \
|----------| / -1 \
| 2 | |-----|
x - 1 \x - x + 1/ \2*3/4/
---------- = ------------ + -------------------------
2 2 2
x - x + 1 / ___ ___\
|-2*\/ 3 \/ 3 |
|--------*x + -----| + 1
\ 3 3 / / | | x - 1 | ---------- dx | 2 = | x - x + 1 | /
/
|
| 1
/ 2* | ------------------------- dx
| | 2
| 2*x - 1 | / ___ ___\
| ---------- dx | |-2*\/ 3 \/ 3 |
| 2 | |--------*x + -----| + 1
| x - x + 1 | \ 3 3 /
| |
/ /
---------------- - ---------------------------------
2 3 /
|
| 2*x - 1
| ---------- dx
| 2
| x - x + 1
|
/
----------------
2 2 u = x - x
/
|
| 1
| ----- du
| 1 + u
|
/ log(1 + u)
----------- = ----------
2 2 /
|
| 2*x - 1
| ---------- dx
| 2
| x - x + 1
| / 2 \
/ log\1 + x - x/
---------------- = ---------------
2 2 /
|
| 1
-2* | ------------------------- dx
| 2
| / ___ ___\
| |-2*\/ 3 \/ 3 |
| |--------*x + -----| + 1
| \ 3 3 /
|
/
----------------------------------
3 ___ ___
\/ 3 2*x*\/ 3
v = ----- - ---------
3 3 /
|
| 1
-2* | ------ dv
| 2
| 1 + v
|
/ -2*atan(v)
--------------- = ----------
3 3 /
|
| 1
-2* | ------------------------- dx
| 2
| / ___ ___\
| |-2*\/ 3 \/ 3 |
| |--------*x + -----| + 1 / ___ ___\
| \ 3 3 / ___ | \/ 3 2*x*\/ 3 |
| -\/ 3 *atan|- ----- + ---------|
/ \ 3 3 /
---------------------------------- = ---------------------------------
3 3 / ___ ___\
___ | \/ 3 2*x*\/ 3 |
/ 2 \ \/ 3 *atan|- ----- + ---------|
log\1 + x - x/ \ 3 3 /
C + --------------- - -------------------------------
2 3 / ___ \ / ___ |2*\/ 3 *(-1/2 + x)| | / 2 \ \/ 3 *atan|------------------| | x - 1 log\1 + x - x/ \ 3 / | ---------- dx = C + --------------- - ------------------------------ | 2 2 3 | x - x + 1 | /
___
-pi*\/ 3
----------
9
=
___
-pi*\/ 3
----------
9
-pi*sqrt(3)/9
Use the examples entering the upper and lower limits of integration.