Mister Exam

Other calculators


(x-1)/(x^(1/2)+1)

Integral of (x-1)/(x^(1/2)+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  9             
  /             
 |              
 |    x - 1     
 |  --------- dx
 |    ___       
 |  \/ x  + 1   
 |              
/               
4               
49x1x+1dx\int\limits_{4}^{9} \frac{x - 1}{\sqrt{x} + 1}\, dx
Integral((x - 1)/(sqrt(x) + 1), (x, 4, 9))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=xu = \sqrt{x}.

      Then let du=dx2xdu = \frac{dx}{2 \sqrt{x}} and substitute dudu:

      (2u22u)du\int \left(2 u^{2} - 2 u\right)\, du

      1. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          2u2du=2u2du\int 2 u^{2}\, du = 2 \int u^{2}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

          So, the result is: 2u33\frac{2 u^{3}}{3}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (2u)du=2udu\int \left(- 2 u\right)\, du = - 2 \int u\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            udu=u22\int u\, du = \frac{u^{2}}{2}

          So, the result is: u2- u^{2}

        The result is: 2u33u2\frac{2 u^{3}}{3} - u^{2}

      Now substitute uu back in:

      2x323x\frac{2 x^{\frac{3}{2}}}{3} - x

    Method #2

    1. Rewrite the integrand:

      x1x+1=xx+11x+1\frac{x - 1}{\sqrt{x} + 1} = \frac{x}{\sqrt{x} + 1} - \frac{1}{\sqrt{x} + 1}

    2. Integrate term-by-term:

      1. Let u=xu = \sqrt{x}.

        Then let du=dx2xdu = \frac{dx}{2 \sqrt{x}} and substitute 2du2 du:

        2u3u+1du\int \frac{2 u^{3}}{u + 1}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          u3u+1du=2u3u+1du\int \frac{u^{3}}{u + 1}\, du = 2 \int \frac{u^{3}}{u + 1}\, du

          1. Rewrite the integrand:

            u3u+1=u2u+11u+1\frac{u^{3}}{u + 1} = u^{2} - u + 1 - \frac{1}{u + 1}

          2. Integrate term-by-term:

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

            1. The integral of a constant times a function is the constant times the integral of the function:

              (u)du=udu\int \left(- u\right)\, du = - \int u\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                udu=u22\int u\, du = \frac{u^{2}}{2}

              So, the result is: u22- \frac{u^{2}}{2}

            1. The integral of a constant is the constant times the variable of integration:

              1du=u\int 1\, du = u

            1. The integral of a constant times a function is the constant times the integral of the function:

              (1u+1)du=1u+1du\int \left(- \frac{1}{u + 1}\right)\, du = - \int \frac{1}{u + 1}\, du

              1. Let u=u+1u = u + 1.

                Then let du=dudu = du and substitute dudu:

                1udu\int \frac{1}{u}\, du

                1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

                Now substitute uu back in:

                log(u+1)\log{\left(u + 1 \right)}

              So, the result is: log(u+1)- \log{\left(u + 1 \right)}

            The result is: u33u22+ulog(u+1)\frac{u^{3}}{3} - \frac{u^{2}}{2} + u - \log{\left(u + 1 \right)}

          So, the result is: 2u33u2+2u2log(u+1)\frac{2 u^{3}}{3} - u^{2} + 2 u - 2 \log{\left(u + 1 \right)}

        Now substitute uu back in:

        2x323+2xx2log(x+1)\frac{2 x^{\frac{3}{2}}}{3} + 2 \sqrt{x} - x - 2 \log{\left(\sqrt{x} + 1 \right)}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (1x+1)dx=1x+1dx\int \left(- \frac{1}{\sqrt{x} + 1}\right)\, dx = - \int \frac{1}{\sqrt{x} + 1}\, dx

        1. Let u=xu = \sqrt{x}.

          Then let du=dx2xdu = \frac{dx}{2 \sqrt{x}} and substitute 2du2 du:

          2uu+1du\int \frac{2 u}{u + 1}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            uu+1du=2uu+1du\int \frac{u}{u + 1}\, du = 2 \int \frac{u}{u + 1}\, du

            1. Rewrite the integrand:

              uu+1=11u+1\frac{u}{u + 1} = 1 - \frac{1}{u + 1}

            2. Integrate term-by-term:

              1. The integral of a constant is the constant times the variable of integration:

                1du=u\int 1\, du = u

              1. The integral of a constant times a function is the constant times the integral of the function:

                (1u+1)du=1u+1du\int \left(- \frac{1}{u + 1}\right)\, du = - \int \frac{1}{u + 1}\, du

                1. Let u=u+1u = u + 1.

                  Then let du=dudu = du and substitute dudu:

                  1udu\int \frac{1}{u}\, du

                  1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

                  Now substitute uu back in:

                  log(u+1)\log{\left(u + 1 \right)}

                So, the result is: log(u+1)- \log{\left(u + 1 \right)}

              The result is: ulog(u+1)u - \log{\left(u + 1 \right)}

            So, the result is: 2u2log(u+1)2 u - 2 \log{\left(u + 1 \right)}

          Now substitute uu back in:

          2x2log(x+1)2 \sqrt{x} - 2 \log{\left(\sqrt{x} + 1 \right)}

        So, the result is: 2x+2log(x+1)- 2 \sqrt{x} + 2 \log{\left(\sqrt{x} + 1 \right)}

      The result is: 2x323x\frac{2 x^{\frac{3}{2}}}{3} - x

  2. Add the constant of integration:

    2x323x+constant\frac{2 x^{\frac{3}{2}}}{3} - x+ \mathrm{constant}


The answer is:

2x323x+constant\frac{2 x^{\frac{3}{2}}}{3} - x+ \mathrm{constant}

The answer (Indefinite) [src]
  /                             
 |                           3/2
 |   x - 1                2*x   
 | --------- dx = C - x + ------
 |   ___                    3   
 | \/ x  + 1                    
 |                              
/                               
x1x+1dx=C+2x323x\int \frac{x - 1}{\sqrt{x} + 1}\, dx = C + \frac{2 x^{\frac{3}{2}}}{3} - x
The graph
4.09.04.55.05.56.06.57.07.58.08.5010
The answer [src]
23/3
233\frac{23}{3}
=
=
23/3
233\frac{23}{3}
23/3
Numerical answer [src]
7.66666666666667
7.66666666666667
The graph
Integral of (x-1)/(x^(1/2)+1) dx

    Use the examples entering the upper and lower limits of integration.