Mister Exam

Integral of x-(1/x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  3           
  /           
 |            
 |  /    1\   
 |  |x - -| dx
 |  \    x/   
 |            
/             
1             
13(x1x)dx\int\limits_{1}^{3} \left(x - \frac{1}{x}\right)\, dx
Integral(x - 1/x, (x, 1, 3))
Detail solution
  1. Integrate term-by-term:

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      xdx=x22\int x\, dx = \frac{x^{2}}{2}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (1x)dx=1xdx\int \left(- \frac{1}{x}\right)\, dx = - \int \frac{1}{x}\, dx

      1. The integral of 1x\frac{1}{x} is log(x)\log{\left(x \right)}.

      So, the result is: log(x)- \log{\left(x \right)}

    The result is: x22log(x)\frac{x^{2}}{2} - \log{\left(x \right)}

  2. Add the constant of integration:

    x22log(x)+constant\frac{x^{2}}{2} - \log{\left(x \right)}+ \mathrm{constant}


The answer is:

x22log(x)+constant\frac{x^{2}}{2} - \log{\left(x \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                            
 |                   2         
 | /    1\          x          
 | |x - -| dx = C + -- - log(x)
 | \    x/          2          
 |                             
/                              
(x1x)dx=C+x22log(x)\int \left(x - \frac{1}{x}\right)\, dx = C + \frac{x^{2}}{2} - \log{\left(x \right)}
The graph
1.03.01.21.41.61.82.02.22.42.62.805
The answer [src]
4 - log(3)
4log(3)4 - \log{\left(3 \right)}
=
=
4 - log(3)
4log(3)4 - \log{\left(3 \right)}
4 - log(3)
Numerical answer [src]
2.90138771133189
2.90138771133189
The graph
Integral of x-(1/x) dx

    Use the examples entering the upper and lower limits of integration.