Mister Exam

Other calculators

Integral of (x-1/2)*e^x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |             x   
 |  (x - 1/2)*E  dx
 |                 
/                  
0                  
01ex(x12)dx\int\limits_{0}^{1} e^{x} \left(x - \frac{1}{2}\right)\, dx
Integral((x - 1/2)*E^x, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    ex(x12)=xexex2e^{x} \left(x - \frac{1}{2}\right) = x e^{x} - \frac{e^{x}}{2}

  2. Integrate term-by-term:

    1. Use integration by parts:

      udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

      Let u(x)=xu{\left(x \right)} = x and let dv(x)=ex\operatorname{dv}{\left(x \right)} = e^{x}.

      Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

      To find v(x)v{\left(x \right)}:

      1. The integral of the exponential function is itself.

        exdx=ex\int e^{x}\, dx = e^{x}

      Now evaluate the sub-integral.

    2. The integral of the exponential function is itself.

      exdx=ex\int e^{x}\, dx = e^{x}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (ex2)dx=exdx2\int \left(- \frac{e^{x}}{2}\right)\, dx = - \frac{\int e^{x}\, dx}{2}

      1. The integral of the exponential function is itself.

        exdx=ex\int e^{x}\, dx = e^{x}

      So, the result is: ex2- \frac{e^{x}}{2}

    The result is: xex3ex2x e^{x} - \frac{3 e^{x}}{2}

  3. Now simplify:

    (x32)ex\left(x - \frac{3}{2}\right) e^{x}

  4. Add the constant of integration:

    (x32)ex+constant\left(x - \frac{3}{2}\right) e^{x}+ \mathrm{constant}


The answer is:

(x32)ex+constant\left(x - \frac{3}{2}\right) e^{x}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                 
 |                          x       
 |            x          3*e       x
 | (x - 1/2)*E  dx = C - ---- + x*e 
 |                        2         
/                                   
ex(x12)dx=C+xex3ex2\int e^{x} \left(x - \frac{1}{2}\right)\, dx = C + x e^{x} - \frac{3 e^{x}}{2}
The graph
0.001.000.100.200.300.400.500.600.700.800.905-5
The answer [src]
3   E
- - -
2   2
32e2\frac{3}{2} - \frac{e}{2}
=
=
3   E
- - -
2   2
32e2\frac{3}{2} - \frac{e}{2}
3/2 - E/2
Numerical answer [src]
0.140859085770477
0.140859085770477

    Use the examples entering the upper and lower limits of integration.