Mister Exam

Other calculators

Integral of (x-1)/ln(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |  x - 1    
 |  ------ dx
 |  log(x)   
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{x - 1}{\log{\left(x \right)}}\, dx$$
Integral((x - 1)/log(x), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. Rewrite the integrand:

          2. Integrate term-by-term:

            1. Let .

              Then let and substitute :

              1. The integral of a constant times a function is the constant times the integral of the function:

                  EiRule(a=2, b=0, context=exp(2*_u)/_u, symbol=_u)

                So, the result is:

              Now substitute back in:

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. Let .

                Then let and substitute :

                1. The integral of a constant times a function is the constant times the integral of the function:

                    EiRule(a=1, b=0, context=exp(_u)/_u, symbol=_u)

                  So, the result is:

                Now substitute back in:

              So, the result is:

            The result is:

          So, the result is:

        Now substitute back in:

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Let .

        Then let and substitute :

          EiRule(a=2, b=0, context=exp(2*_u)/_u, symbol=_u)

        Now substitute back in:

      1. The integral of a constant times a function is the constant times the integral of the function:

          LiRule(a=1, b=0, context=1/log(x), symbol=x)

        So, the result is:

      The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                         
 |                                          
 | x - 1                                    
 | ------ dx = C - Ei(log(x)) + Ei(2*log(x))
 | log(x)                                   
 |                                          
/                                           
$$\int \frac{x - 1}{\log{\left(x \right)}}\, dx = C - \operatorname{Ei}{\left(\log{\left(x \right)} \right)} + \operatorname{Ei}{\left(2 \log{\left(x \right)} \right)}$$
The answer [src]
log(2)
$$\log{\left(2 \right)}$$
=
=
log(2)
$$\log{\left(2 \right)}$$
log(2)
Numerical answer [src]
0.693147180559945
0.693147180559945

    Use the examples entering the upper and lower limits of integration.