1 / | | x - 1 | ---------- dx | 3 ________ | \/ log(x) | / 0
Integral((x - 1)/log(x)^(1/3), (x, 0, 1))
Rewrite the integrand:
Integrate term-by-term:
Let .
Then let and substitute :
UpperGammaRule(a=2, e=-1/3, context=exp(2*_u)/_u**(1/3), symbol=_u)
Now substitute back in:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
UpperGammaRule(a=1, e=-1/3, context=exp(_u)/_u**(1/3), symbol=_u)
Now substitute back in:
So, the result is:
The result is:
Now simplify:
Add the constant of integration:
The answer is:
/ | 3 _________ 3 ___ 3 _________ | x - 1 \/ -log(x) *Gamma(2/3, -log(x)) \/ 2 *\/ -log(x) *Gamma(2/3, -2*log(x)) | ---------- dx = C - ------------------------------- + --------------------------------------- | 3 ________ 3 ________ 3 ________ | \/ log(x) \/ log(x) 2*\/ log(x) | /
1 / | | -1 + x | ---------- dx | 3 ________ | \/ log(x) | / 0
=
1 / | | -1 + x | ---------- dx | 3 ________ | \/ log(x) | / 0
Integral((-1 + x)/log(x)^(1/3), (x, 0, 1))
(-0.250538545732302 + 0.433945490462766j)
(-0.250538545732302 + 0.433945490462766j)
Use the examples entering the upper and lower limits of integration.