Mister Exam

Other calculators

Integral of (x-1)/(lnx)^(1/3) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |    x - 1      
 |  ---------- dx
 |  3 ________   
 |  \/ log(x)    
 |               
/                
0                
$$\int\limits_{0}^{1} \frac{x - 1}{\sqrt[3]{\log{\left(x \right)}}}\, dx$$
Integral((x - 1)/log(x)^(1/3), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. Let .

      Then let and substitute :

        UpperGammaRule(a=2, e=-1/3, context=exp(2*_u)/_u**(1/3), symbol=_u)

      Now substitute back in:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

          UpperGammaRule(a=1, e=-1/3, context=exp(_u)/_u**(1/3), symbol=_u)

        Now substitute back in:

      So, the result is:

    The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                                             
 |                     3 _________                       3 ___ 3 _________                      
 |   x - 1             \/ -log(x) *Gamma(2/3, -log(x))   \/ 2 *\/ -log(x) *Gamma(2/3, -2*log(x))
 | ---------- dx = C - ------------------------------- + ---------------------------------------
 | 3 ________                     3 ________                             3 ________             
 | \/ log(x)                      \/ log(x)                            2*\/ log(x)              
 |                                                                                              
/                                                                                               
$$\int \frac{x - 1}{\sqrt[3]{\log{\left(x \right)}}}\, dx = C + \frac{\sqrt[3]{2} \sqrt[3]{- \log{\left(x \right)}} \Gamma\left(\frac{2}{3}, - 2 \log{\left(x \right)}\right)}{2 \sqrt[3]{\log{\left(x \right)}}} - \frac{\sqrt[3]{- \log{\left(x \right)}} \Gamma\left(\frac{2}{3}, - \log{\left(x \right)}\right)}{\sqrt[3]{\log{\left(x \right)}}}$$
The answer [src]
  1              
  /              
 |               
 |    -1 + x     
 |  ---------- dx
 |  3 ________   
 |  \/ log(x)    
 |               
/                
0                
$$\int\limits_{0}^{1} \frac{x - 1}{\sqrt[3]{\log{\left(x \right)}}}\, dx$$
=
=
  1              
  /              
 |               
 |    -1 + x     
 |  ---------- dx
 |  3 ________   
 |  \/ log(x)    
 |               
/                
0                
$$\int\limits_{0}^{1} \frac{x - 1}{\sqrt[3]{\log{\left(x \right)}}}\, dx$$
Integral((-1 + x)/log(x)^(1/3), (x, 0, 1))
Numerical answer [src]
(-0.250538545732302 + 0.433945490462766j)
(-0.250538545732302 + 0.433945490462766j)

    Use the examples entering the upper and lower limits of integration.