Mister Exam

Other calculators

Integral of (x-9)•sin*x/2dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |  (x - 9)*sin(x)   
 |  -------------- dx
 |        2          
 |                   
/                    
0                    
$$\int\limits_{0}^{1} \frac{\left(x - 9\right) \sin{\left(x \right)}}{2}\, dx$$
Integral(((x - 9)*sin(x))/2, (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. There are multiple ways to do this integral.

      Method #1

      1. Rewrite the integrand:

      2. Integrate term-by-term:

        1. Use integration by parts:

          Let and let .

          Then .

          To find :

          1. The integral of sine is negative cosine:

          Now evaluate the sub-integral.

        2. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of cosine is sine:

          So, the result is:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of sine is negative cosine:

          So, the result is:

        The result is:

      Method #2

      1. Use integration by parts:

        Let and let .

        Then .

        To find :

        1. The integral of sine is negative cosine:

        Now evaluate the sub-integral.

      2. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of cosine is sine:

        So, the result is:

    So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                    
 |                                                     
 | (x - 9)*sin(x)          sin(x)   9*cos(x)   x*cos(x)
 | -------------- dx = C + ------ + -------- - --------
 |       2                   2         2          2    
 |                                                     
/                                                      
$$\int \frac{\left(x - 9\right) \sin{\left(x \right)}}{2}\, dx = C - \frac{x \cos{\left(x \right)}}{2} + \frac{\sin{\left(x \right)}}{2} + \frac{9 \cos{\left(x \right)}}{2}$$
The graph
The answer [src]
  9   sin(1)           
- - + ------ + 4*cos(1)
  2     2              
$$- \frac{9}{2} + \frac{\sin{\left(1 \right)}}{2} + 4 \cos{\left(1 \right)}$$
=
=
  9   sin(1)           
- - + ------ + 4*cos(1)
  2     2              
$$- \frac{9}{2} + \frac{\sin{\left(1 \right)}}{2} + 4 \cos{\left(1 \right)}$$
-9/2 + sin(1)/2 + 4*cos(1)
Numerical answer [src]
-1.91805528412349
-1.91805528412349

    Use the examples entering the upper and lower limits of integration.