Integral of 1/(2+cosx)^2 dx
The solution
The answer (Indefinite)
[src]
/ /x pi\ / ___ /x\\\ / /x pi\ / ___ /x\\\
| |- - --| |\/ 3 *tan|-||| | |- - --| |\/ 3 *tan|-|||
/ /x\ ___ | |2 2 | | \2/|| ___ 2/x\ | |2 2 | | \2/||
| 6*tan|-| 12*\/ 3 *|pi*floor|------| + atan|------------|| 4*\/ 3 *tan |-|*|pi*floor|------| + atan|------------||
| 1 \2/ \ \ pi / \ 3 // \2/ \ \ pi / \ 3 //
| ------------- dx = C - -------------- + ------------------------------------------------ + -------------------------------------------------------
| 2 2/x\ 2/x\ 2/x\
| (2 + cos(x)) 27 + 9*tan |-| 27 + 9*tan |-| 27 + 9*tan |-|
| \2/ \2/ \2/
/
∫(cos(x)+2)21dx=C+9tan2(2x)+2743(atan(33tan(2x))+π⌊π2x−2π⌋)tan2(2x)+9tan2(2x)+27123(atan(33tan(2x))+π⌊π2x−2π⌋)−9tan2(2x)+276tan(2x)
The graph
/ / ___ \\ / / ___ \\
___ | |\/ 3 *tan(1/2)|| ___ 2 | |\/ 3 *tan(1/2)||
___ 12*\/ 3 *|-pi + atan|--------------|| 4*\/ 3 *tan (1/2)*|-pi + atan|--------------||
6*tan(1/2) 4*pi*\/ 3 \ \ 3 // \ \ 3 //
- ---------------- + ---------- + ------------------------------------- + ----------------------------------------------
2 9 2 2
27 + 9*tan (1/2) 27 + 9*tan (1/2) 27 + 9*tan (1/2)
9tan2(21)+27123(−π+atan(33tan(21)))+9tan2(21)+2743(−π+atan(33tan(21)))tan2(21)−9tan2(21)+276tan(21)+943π
=
/ / ___ \\ / / ___ \\
___ | |\/ 3 *tan(1/2)|| ___ 2 | |\/ 3 *tan(1/2)||
___ 12*\/ 3 *|-pi + atan|--------------|| 4*\/ 3 *tan (1/2)*|-pi + atan|--------------||
6*tan(1/2) 4*pi*\/ 3 \ \ 3 // \ \ 3 //
- ---------------- + ---------- + ------------------------------------- + ----------------------------------------------
2 9 2 2
27 + 9*tan (1/2) 27 + 9*tan (1/2) 27 + 9*tan (1/2)
9tan2(21)+27123(−π+atan(33tan(21)))+9tan2(21)+2743(−π+atan(33tan(21)))tan2(21)−9tan2(21)+276tan(21)+943π
-6*tan(1/2)/(27 + 9*tan(1/2)^2) + 4*pi*sqrt(3)/9 + 12*sqrt(3)*(-pi + atan(sqrt(3)*tan(1/2)/3))/(27 + 9*tan(1/2)^2) + 4*sqrt(3)*tan(1/2)^2*(-pi + atan(sqrt(3)*tan(1/2)/3))/(27 + 9*tan(1/2)^2)
Use the examples entering the upper and lower limits of integration.