Mister Exam

Integral of x-lnx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |  (x - log(x)) dx
 |                 
/                  
0                  
01(xlog(x))dx\int\limits_{0}^{1} \left(x - \log{\left(x \right)}\right)\, dx
Integral(x - log(x), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      xdx=x22\int x\, dx = \frac{x^{2}}{2}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (log(x))dx=log(x)dx\int \left(- \log{\left(x \right)}\right)\, dx = - \int \log{\left(x \right)}\, dx

      1. Use integration by parts:

        udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

        Let u(x)=log(x)u{\left(x \right)} = \log{\left(x \right)} and let dv(x)=1\operatorname{dv}{\left(x \right)} = 1.

        Then du(x)=1x\operatorname{du}{\left(x \right)} = \frac{1}{x}.

        To find v(x)v{\left(x \right)}:

        1. The integral of a constant is the constant times the variable of integration:

          1dx=x\int 1\, dx = x

        Now evaluate the sub-integral.

      2. The integral of a constant is the constant times the variable of integration:

        1dx=x\int 1\, dx = x

      So, the result is: xlog(x)+x- x \log{\left(x \right)} + x

    The result is: x22xlog(x)+x\frac{x^{2}}{2} - x \log{\left(x \right)} + x

  2. Now simplify:

    x(x2log(x)+2)2\frac{x \left(x - 2 \log{\left(x \right)} + 2\right)}{2}

  3. Add the constant of integration:

    x(x2log(x)+2)2+constant\frac{x \left(x - 2 \log{\left(x \right)} + 2\right)}{2}+ \mathrm{constant}


The answer is:

x(x2log(x)+2)2+constant\frac{x \left(x - 2 \log{\left(x \right)} + 2\right)}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                           2           
 |                           x            
 | (x - log(x)) dx = C + x + -- - x*log(x)
 |                           2            
/                                         
(xlog(x))dx=C+x22xlog(x)+x\int \left(x - \log{\left(x \right)}\right)\, dx = C + \frac{x^{2}}{2} - x \log{\left(x \right)} + x
The graph
0.001.000.100.200.300.400.500.600.700.800.90010
The answer [src]
3/2
32\frac{3}{2}
=
=
3/2
32\frac{3}{2}
3/2
Numerical answer [src]
1.5
1.5
The graph
Integral of x-lnx dx

    Use the examples entering the upper and lower limits of integration.