0 / | | x - 4 | --------- dx | ___ | \/ x - 2 | / 3
Integral((x - 4)/(sqrt(x) - 2), (x, 3, 0))
There are multiple ways to do this integral.
Let .
Then let and substitute :
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The result is:
Now substitute back in:
Rewrite the integrand:
Integrate term-by-term:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Integrate term-by-term:
The integral of is when :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The integral of a constant is the constant times the variable of integration:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is .
Now substitute back in:
So, the result is:
The result is:
So, the result is:
Now substitute back in:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant is the constant times the variable of integration:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is .
Now substitute back in:
So, the result is:
The result is:
So, the result is:
Now substitute back in:
So, the result is:
The result is:
Add the constant of integration:
The answer is:
/ | 3/2 | x - 4 2*x | --------- dx = C + 2*x + ------ | ___ 3 | \/ x - 2 | /
___ -6 - 2*\/ 3
=
___ -6 - 2*\/ 3
-6 - 2*sqrt(3)
Use the examples entering the upper and lower limits of integration.