1 / | | 1 | ------------- dx | _______ | 1 + \/ x + 1 | / 0
Integral(1/(1 + sqrt(x + 1)), (x, 0, 1))
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant is the constant times the variable of integration:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is .
Now substitute back in:
So, the result is:
The result is:
So, the result is:
Now substitute back in:
Now simplify:
Add the constant of integration:
The answer is:
/ | | 1 / _______\ _______ | ------------- dx = C - 2*log\1 + \/ x + 1 / + 2*\/ x + 1 | _______ | 1 + \/ x + 1 | /
/ ___\ ___ -2 - 2*log\1 + \/ 2 / + 2*\/ 2 + 2*log(2)
=
/ ___\ ___ -2 - 2*log\1 + \/ 2 / + 2*\/ 2 + 2*log(2)
-2 - 2*log(1 + sqrt(2)) + 2*sqrt(2) + 2*log(2)
Use the examples entering the upper and lower limits of integration.