Mister Exam

Other calculators


1/(1+sqrt(x+1))

Integral of 1/(1+sqrt(x+1)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |        1         
 |  ------------- dx
 |        _______   
 |  1 + \/ x + 1    
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \frac{1}{\sqrt{x + 1} + 1}\, dx$$
Integral(1/(1 + sqrt(x + 1)), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Rewrite the integrand:

      2. Integrate term-by-term:

        1. The integral of a constant is the constant times the variable of integration:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of is .

            Now substitute back in:

          So, the result is:

        The result is:

      So, the result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                         
 |                                                          
 |       1                     /      _______\       _______
 | ------------- dx = C - 2*log\1 + \/ x + 1 / + 2*\/ x + 1 
 |       _______                                            
 | 1 + \/ x + 1                                             
 |                                                          
/                                                           
$$\int \frac{1}{\sqrt{x + 1} + 1}\, dx = C + 2 \sqrt{x + 1} - 2 \log{\left(\sqrt{x + 1} + 1 \right)}$$
The graph
The answer [src]
          /      ___\       ___           
-2 - 2*log\1 + \/ 2 / + 2*\/ 2  + 2*log(2)
$$-2 - 2 \log{\left(1 + \sqrt{2} \right)} + 2 \log{\left(2 \right)} + 2 \sqrt{2}$$
=
=
          /      ___\       ___           
-2 - 2*log\1 + \/ 2 / + 2*\/ 2  + 2*log(2)
$$-2 - 2 \log{\left(1 + \sqrt{2} \right)} + 2 \log{\left(2 \right)} + 2 \sqrt{2}$$
-2 - 2*log(1 + sqrt(2)) + 2*sqrt(2) + 2*log(2)
Numerical answer [src]
0.451974311826995
0.451974311826995
The graph
Integral of 1/(1+sqrt(x+1)) dx

    Use the examples entering the upper and lower limits of integration.