Integral of (x-csc(x)cot(x)) dx
The solution
Detail solution
-
Integrate term-by-term:
-
The integral of xn is n+1xn+1 when n=−1:
∫xdx=2x2
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−cot(x)csc(x))dx=−∫cot(x)csc(x)dx
-
The integral of a constant times a function is the constant times the integral of the function:
∫cot(x)csc(x)dx=−∫(−cot(x)csc(x))dx
-
The integral of cosecant times cotangent is cosecant:
∫(−cot(x)csc(x))dx=csc(x)
So, the result is: −csc(x)
So, the result is: csc(x)
The result is: 2x2+csc(x)
-
Add the constant of integration:
2x2+csc(x)+constant
The answer is:
2x2+csc(x)+constant
The answer (Indefinite)
[src]
/ 2
| x
| (x - csc(x)*cot(x)) dx = C + -- + csc(x)
| 2
/
sinx1+2x2
The graph
Use the examples entering the upper and lower limits of integration.