Mister Exam

Other calculators

Integral of X/(xlnx-x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |       x         
 |  ------------ dx
 |  x*log(x) - x   
 |                 
/                  
0                  
01xxlog(x)xdx\int\limits_{0}^{1} \frac{x}{x \log{\left(x \right)} - x}\, dx
Integral(x/(x*log(x) - x), (x, 0, 1))
The answer (Indefinite) [src]
  /                        /                
 |                        |                 
 |      x                 |       x         
 | ------------ dx = C +  | ------------- dx
 | x*log(x) - x           | -x + x*log(x)   
 |                        |                 
/                        /                  
xxlog(x)xdx=C+xxlog(x)xdx\int \frac{x}{x \log{\left(x \right)} - x}\, dx = C + \int \frac{x}{x \log{\left(x \right)} - x}\, dx
The answer [src]
  1                 
  /                 
 |                  
 |        x         
 |  ------------- dx
 |  -x + x*log(x)   
 |                  
/                   
0                   
01xxlog(x)xdx\int\limits_{0}^{1} \frac{x}{x \log{\left(x \right)} - x}\, dx
=
=
  1                 
  /                 
 |                  
 |        x         
 |  ------------- dx
 |  -x + x*log(x)   
 |                  
/                   
0                   
01xxlog(x)xdx\int\limits_{0}^{1} \frac{x}{x \log{\left(x \right)} - x}\, dx
Integral(x/(-x + x*log(x)), (x, 0, 1))
Numerical answer [src]
-0.596347362323194
-0.596347362323194

    Use the examples entering the upper and lower limits of integration.