Mister Exam

Other calculators


x/((x^2-1)^(3/2)*ln2)
  • How to use it?

  • Integral of d{x}:
  • Integral of x^2*e^(x*(-2)) Integral of x^2*e^(x*(-2))
  • Integral of e^(-x^3) Integral of e^(-x^3)
  • Integral of -exp(-3*x) Integral of -exp(-3*x)
  • Integral of (xcosx)/(2+3x^3)
  • Identical expressions

  • x/((x^ two - one)^(three / two)*ln2)
  • x divide by ((x squared minus 1) to the power of (3 divide by 2) multiply by ln2)
  • x divide by ((x to the power of two minus one) to the power of (three divide by two) multiply by ln2)
  • x/((x2-1)(3/2)*ln2)
  • x/x2-13/2*ln2
  • x/((x²-1)^(3/2)*ln2)
  • x/((x to the power of 2-1) to the power of (3/2)*ln2)
  • x/((x^2-1)^(3/2)ln2)
  • x/((x2-1)(3/2)ln2)
  • x/x2-13/2ln2
  • x/x^2-1^3/2ln2
  • x divide by ((x^2-1)^(3 divide by 2)*ln2)
  • x/((x^2-1)^(3/2)*ln2)dx
  • Similar expressions

  • x/((x^2+1)^(3/2)*ln2)

Integral of x/((x^2-1)^(3/2)*ln2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2                      
  /                      
 |                       
 |          x            
 |  ------------------ dx
 |          3/2          
 |  / 2    \             
 |  \x  - 1/   *log(2)   
 |                       
/                        
1                        
$$\int\limits_{1}^{2} \frac{x}{\left(x^{2} - 1\right)^{\frac{3}{2}} \log{\left(2 \right)}}\, dx$$
Integral(x/(((x^2 - 1)^(3/2)*log(2))), (x, 1, 2))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

    2. Let .

      Then let and substitute :

      1. Let .

        Then let and substitute :

        1. Rewrite the integrand:

        2. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        Now substitute back in:

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. Let .

      Then let and substitute :

      1. Let .

        Then let and substitute :

        1. Rewrite the integrand:

        2. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        Now substitute back in:

      Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                               
 |                                                
 |         x                            1         
 | ------------------ dx = C - -------------------
 |         3/2                    _________       
 | / 2    \                      /       2        
 | \x  - 1/   *log(2)          \/  -1 + x  *log(2)
 |                                                
/                                                 
$$\int \frac{x}{\left(x^{2} - 1\right)^{\frac{3}{2}} \log{\left(2 \right)}}\, dx = C - \frac{1}{\sqrt{x^{2} - 1} \log{\left(2 \right)}}$$
The graph
The answer [src]
oo
$$\infty$$
=
=
oo
$$\infty$$
oo
Numerical answer [src]
3808486227.45872
3808486227.45872
The graph
Integral of x/((x^2-1)^(3/2)*ln2) dx

    Use the examples entering the upper and lower limits of integration.