2 / | | x | ------------------ dx | 3/2 | / 2 \ | \x - 1/ *log(2) | / 1
Integral(x/(((x^2 - 1)^(3/2)*log(2))), (x, 1, 2))
There are multiple ways to do this integral.
Rewrite the integrand:
Let .
Then let and substitute :
Let .
Then let and substitute :
Rewrite the integrand:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
Now substitute back in:
Rewrite the integrand:
Let .
Then let and substitute :
Let .
Then let and substitute :
Rewrite the integrand:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
Now substitute back in:
Add the constant of integration:
The answer is:
/ | | x 1 | ------------------ dx = C - ------------------- | 3/2 _________ | / 2 \ / 2 | \x - 1/ *log(2) \/ -1 + x *log(2) | /
Use the examples entering the upper and lower limits of integration.