Mister Exam

Other calculators

Integral of x/(x^2-4x+5) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo                
  /                
 |                 
 |       x         
 |  ------------ dx
 |   2             
 |  x  - 4*x + 5   
 |                 
/                  
1                  
$$\int\limits_{1}^{\infty} \frac{x}{\left(x^{2} - 4 x\right) + 5}\, dx$$
Integral(x/(x^2 - 4*x + 5), (x, 1, oo))
Detail solution
We have the integral:
  /               
 |                
 |      x         
 | ------------ dx
 |  2             
 | x  - 4*x + 5   
 |                
/                 
Rewrite the integrand
               /  2*x - 4   \                
               |------------|        /2\     
               | 2          |        |-|     
     x         \x  - 4*x + 5/        \1/     
------------ = -------------- + -------------
 2                   2                  2    
x  - 4*x + 5                    (-x + 2)  + 1
or
  /                 
 |                  
 |      x           
 | ------------ dx  
 |  2              =
 | x  - 4*x + 5     
 |                  
/                   
  
  /                                       
 |                                        
 |   2*x - 4                              
 | ------------ dx                        
 |  2                                     
 | x  - 4*x + 5          /                
 |                      |                 
/                       |       1         
------------------ + 2* | ------------- dx
        2               |         2       
                        | (-x + 2)  + 1   
                        |                 
                       /                  
In the integral
  /               
 |                
 |   2*x - 4      
 | ------------ dx
 |  2             
 | x  - 4*x + 5   
 |                
/                 
------------------
        2         
do replacement
     2      
u = x  - 4*x
then
the integral =
  /                     
 |                      
 |   1                  
 | ----- du             
 | 5 + u                
 |                      
/             log(5 + u)
----------- = ----------
     2            2     
do backward replacement
  /                                   
 |                                    
 |   2*x - 4                          
 | ------------ dx                    
 |  2                                 
 | x  - 4*x + 5                       
 |                      /     2      \
/                    log\5 + x  - 4*x/
------------------ = -----------------
        2                    2        
In the integral
    /                
   |                 
   |       1         
2* | ------------- dx
   |         2       
   | (-x + 2)  + 1   
   |                 
  /                  
do replacement
v = 2 - x
then
the integral =
    /                     
   |                      
   |   1                  
2* | ------ dv = 2*atan(v)
   |      2               
   | 1 + v                
   |                      
  /                       
do backward replacement
    /                                 
   |                                  
   |       1                          
2* | ------------- dx = 2*atan(-2 + x)
   |         2                        
   | (-x + 2)  + 1                    
   |                                  
  /                                   
Solution is:
       /     2      \                 
    log\5 + x  - 4*x/                 
C + ----------------- + 2*atan(-2 + x)
            2                         
The answer (Indefinite) [src]
  /                                                        
 |                          /     2      \                 
 |      x                log\5 + x  - 4*x/                 
 | ------------ dx = C + ----------------- + 2*atan(-2 + x)
 |  2                            2                         
 | x  - 4*x + 5                                            
 |                                                         
/                                                          
$$\int \frac{x}{\left(x^{2} - 4 x\right) + 5}\, dx = C + \frac{\log{\left(x^{2} - 4 x + 5 \right)}}{2} + 2 \operatorname{atan}{\left(x - 2 \right)}$$
The graph
The answer [src]
oo
$$\infty$$
=
=
oo
$$\infty$$
oo

    Use the examples entering the upper and lower limits of integration.