Mister Exam

Other calculators

Integral of a^x*e^x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1         
  /         
 |          
 |   x  x   
 |  a *E  dx
 |          
/           
0           
$$\int\limits_{0}^{1} e^{x} a^{x}\, dx$$
Integral(a^x*E^x, (x, 0, 1))
The answer [src]
/      1           E*a             /                       -1\
|- ---------- + ----------  for And\a > -oo, a < oo, a != e  /
<  1 + log(a)   1 + log(a)                                    
|                                                             
\            1                          otherwise             
$$\begin{cases} \frac{e a}{\log{\left(a \right)} + 1} - \frac{1}{\log{\left(a \right)} + 1} & \text{for}\: a > -\infty \wedge a < \infty \wedge a \neq e^{-1} \\1 & \text{otherwise} \end{cases}$$
=
=
/      1           E*a             /                       -1\
|- ---------- + ----------  for And\a > -oo, a < oo, a != e  /
<  1 + log(a)   1 + log(a)                                    
|                                                             
\            1                          otherwise             
$$\begin{cases} \frac{e a}{\log{\left(a \right)} + 1} - \frac{1}{\log{\left(a \right)} + 1} & \text{for}\: a > -\infty \wedge a < \infty \wedge a \neq e^{-1} \\1 & \text{otherwise} \end{cases}$$
Piecewise((-1/(1 + log(a)) + E*a/(1 + log(a)), (a > -oo)∧(a < oo)∧(Ne(a, exp(-1)))), (1, True))

    Use the examples entering the upper and lower limits of integration.