Mister Exam

Other calculators


x/(x^4-1)

Integral of x/(x^4-1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |    x      
 |  ------ dx
 |   4       
 |  x  - 1   
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{x}{x^{4} - 1}\, dx$$
Integral(x/(x^4 - 1), (x, 0, 1))
The answer (Indefinite) [src]
                   //      / 2\             \
  /                ||-acoth\x /        4    |
 |                 ||-----------  for x  > 1|
 |   x             ||     2                 |
 | ------ dx = C + |<                       |
 |  4              ||      / 2\             |
 | x  - 1          ||-atanh\x /        4    |
 |                 ||-----------  for x  < 1|
/                  \\     2                 /
$$\int \frac{x}{x^{4} - 1}\, dx = C + \begin{cases} - \frac{\operatorname{acoth}{\left(x^{2} \right)}}{2} & \text{for}\: x^{4} > 1 \\- \frac{\operatorname{atanh}{\left(x^{2} \right)}}{2} & \text{for}\: x^{4} < 1 \end{cases}$$
The graph
The answer [src]
      pi*I
-oo - ----
       4  
$$-\infty - \frac{i \pi}{4}$$
=
=
      pi*I
-oo - ----
       4  
$$-\infty - \frac{i \pi}{4}$$
-oo - pi*i/4
Numerical answer [src]
-11.0227391965541
-11.0227391965541
The graph
Integral of x/(x^4-1) dx

    Use the examples entering the upper and lower limits of integration.