1 / | | x | ------------ dx | 2 | x + 4*x + 5 | / 0
Integral(x/(x^2 + 4*x + 5), (x, 0, 1))
/ | | x | 1*------------ dx | 2 | x + 4*x + 5 | /
/ 1*2*x + 4 \
|--------------| /-2 \
| 2 | |---|
x \1*x + 4*x + 5/ \ 1 /
------------ = ---------------- + -------------
2 2 2
x + 4*x + 5 (-x - 2) + 1/ | | x | 1*------------ dx | 2 = | x + 4*x + 5 | /
/
|
| 1*2*x + 4
| -------------- dx
| 2
| 1*x + 4*x + 5 /
| |
/ | 1
-------------------- - 2* | ------------- dx
2 | 2
| (-x - 2) + 1
|
/ /
|
| 1*2*x + 4
| -------------- dx
| 2
| 1*x + 4*x + 5
|
/
--------------------
2 2 u = x + 4*x
/
|
| 1
| ----- du
| 5 + u
|
/ log(5 + u)
----------- = ----------
2 2 /
|
| 1*2*x + 4
| -------------- dx
| 2
| 1*x + 4*x + 5
| / 2 \
/ log\5 + x + 4*x/
-------------------- = -----------------
2 2 /
|
| 1
-2* | ------------- dx
| 2
| (-x - 2) + 1
|
/ v = -2 - x
/
|
| 1
-2* | ------ dv = -2*atan(v)
| 2
| 1 + v
|
/ /
|
| 1
-2* | ------------- dx = -2*atan(2 + x)
| 2
| (-x - 2) + 1
|
/ / 2 \
log\5 + x + 4*x/
C + ----------------- - 2*atan(2 + x)
2 / | / 2 \ | x log\5 + x + 4*x/ | ------------ dx = C + ----------------- - 2*atan(2 + x) | 2 2 | x + 4*x + 5 | /
log(10) log(5) ------- - 2*atan(3) + 2*atan(2) - ------ 2 2
=
log(10) log(5) ------- - 2*atan(3) + 2*atan(2) - ------ 2 2
Use the examples entering the upper and lower limits of integration.