1 / | | x | ------------ dx | 2 | x - 4*x + 5 | / 0
Integral(x/(x^2 - 4*x + 5), (x, 0, 1))
/ | | x | ------------ dx | 2 | x - 4*x + 5 | /
/ 2*x - 4 \
|------------| /2\
| 2 | |-|
x \x - 4*x + 5/ \1/
------------ = -------------- + -------------
2 2 2
x - 4*x + 5 (-x + 2) + 1/ | | x | ------------ dx | 2 = | x - 4*x + 5 | /
/
|
| 2*x - 4
| ------------ dx
| 2
| x - 4*x + 5 /
| |
/ | 1
------------------ + 2* | ------------- dx
2 | 2
| (-x + 2) + 1
|
/ /
|
| 2*x - 4
| ------------ dx
| 2
| x - 4*x + 5
|
/
------------------
2 2 u = x - 4*x
/
|
| 1
| ----- du
| 5 + u
|
/ log(5 + u)
----------- = ----------
2 2 /
|
| 2*x - 4
| ------------ dx
| 2
| x - 4*x + 5
| / 2 \
/ log\5 + x - 4*x/
------------------ = -----------------
2 2 / | | 1 2* | ------------- dx | 2 | (-x + 2) + 1 | /
v = 2 - x
/ | | 1 2* | ------ dv = 2*atan(v) | 2 | 1 + v | /
/ | | 1 2* | ------------- dx = 2*atan(-2 + x) | 2 | (-x + 2) + 1 | /
/ 2 \
log\5 + x - 4*x/
C + ----------------- + 2*atan(-2 + x)
2 / | / 2 \ | x log\5 + x - 4*x/ | ------------ dx = C + ----------------- + 2*atan(-2 + x) | 2 2 | x - 4*x + 5 | /
log(2) pi log(5) ------ + 2*atan(2) - -- - ------ 2 2 2
=
log(2) pi log(5) ------ + 2*atan(2) - -- - ------ 2 2 2
log(2)/2 + 2*atan(2) - pi/2 - log(5)/2
Use the examples entering the upper and lower limits of integration.