Mister Exam

Other calculators

Integral of x/(sqrt(x^2+49)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |       x         
 |  ------------ dx
 |     _________   
 |    /  2         
 |  \/  x  + 49    
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{x}{\sqrt{x^{2} + 49}}\, dx$$
Integral(x/sqrt(x^2 + 49), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant is the constant times the variable of integration:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                  
 |                          _________
 |      x                  /  2      
 | ------------ dx = C + \/  x  + 49 
 |    _________                      
 |   /  2                            
 | \/  x  + 49                       
 |                                   
/                                    
$$\int \frac{x}{\sqrt{x^{2} + 49}}\, dx = C + \sqrt{x^{2} + 49}$$
The graph
The answer [src]
         ___
-7 + 5*\/ 2 
$$-7 + 5 \sqrt{2}$$
=
=
         ___
-7 + 5*\/ 2 
$$-7 + 5 \sqrt{2}$$
-7 + 5*sqrt(2)
Numerical answer [src]
0.0710678118654752
0.0710678118654752

    Use the examples entering the upper and lower limits of integration.